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Introduction-scope of the thesis

The laser has been at the heart of various fields of research since its invention
[1], because of its intensity and coherence. In fact, soon after the birth of the
laser, its extraordinary intensity generated optical harmonics [2]. A nonlinear
crystal pumped by an intense monochromatic (694.3 nm) laser emitted the
second harmonic light (347.2 nm). Since Franken’s report, the refractive
index and the absorption coefficient of materials have had to be considered
variable parameters. The paper marked the beginning of nonlinear optics.
This research was followed by a parametric amplification [3], a parametric
oscillation [4], a four wave mixing [5, 6], and so on. Recently optical comb
generation [7], which plays the main role in frequency measurement of light [8]
has widely attracted attention. Optical comb generation is also an extension
of the research.

Although P. A. M. Dirac found the beautiful quantum theory of radiation
[9], all of the above phenomena can be explained by the semiclassical theory,
in which light is treated as a classical electric field. H. P. Yuen introduced the
concept of a squeezed state, which one of the main topics in this thesis, and
pointed out that the squeezed state can be generated through a degenerate
parametric amplification [10]. The squeezed state is one of the nonclassi-
cal states of light. As squeezed states have potential applications to optical
communications [11] and gravitation radiation detectors [12], many experi-
mentalists tried to generate the squeezed states. In 1986, R. E. Slusher, et.
al., succeeded in the generation of squeezed vacuum states through paramet-
ric amplification using a Dye laser [13]. Squeezed vacuum states have less
noise than a vacuum state in one of the field quadratures. The squeezing
level increased to 7dB with a sub-threshold parametric oscillator by 2006
[14].

The squeezed vacuum exhibits a number of quantum features and an
EPR type-correlated beam can be produced by overlapping two squeezed
vacua. Such an EPR beam plays the main role in quantum teleportation
[15, 16, 17]. In 1998, A. Furusawa, et. al., successfully demonstrated the un-
conditional quantum teleportation of a light [18]. Since S. L. Braunstein and
his colleagues developed the quantum information theory with continuous
variables [19, 20], the squeezed vacuum has been regarded as an important
information carrier.

The other important property of the laser is coherence, which is used
for coherent manipulation and preparation of the medium. One of the early
applications is the photon echo, which was demonstrated in 1964 [21]. A
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coherently prepared macroscopic electric dipole moment by first laser pulse
restores the dephasing after the second laser pulse and emits an echo. The
idea of the photon echo came from the spin echo [22], which had been inves-
tigated in magneto-resonance. The success of the photon echo means that
the laser can be used for the coherent manipulation of dipoles, in the same
way as the coherent manipulation of spins by the magnetic field. The opti-
cal Bloch equation [23] shows a clear correspondence between atomic dipole
manipulation by laser and spin manipulation by a magnetic field.

The optical reaction of atoms dramatically changes through laser-induced
coherence of atomic states. The destructive quantum interference between
the excitation amplitudes eliminates the absorption at the resonant frequency
of a transition. This is referred to as electromagnetically induced trans-
parency (EIT), which is another main issue in this thesis. EIT was first
observed by S. E. Harris and his colleagues in 1991 [24, 25]. EIT occurs in
a three-level atomic system. When a weak probe light is incident on atoms
which are irradiated by an intense control light, the transition amplitudes
from the ground states to the excited state destructively interfere and the
absorption of the probe light disappears as a result.

EIT provides many interesting phenomena, such as lasers without inver-
sion [26, 27, 28], giant nonlinearity [29, 30, 31, 32], ultraslow light [33, 34,
35, 36], and so on. EIT can also be explained by the semiclassical theory and
all of these experiments have been carried out with laser lights, or lights in
a coherent state.

M. Fleishhauer and M. D. Lukin treated the probe light as a quantized
field and gave the quantum description of the probe light in an EIT medium.
The description is termed a dark state polariton [37, 38]. They also found
that the speed of the dark state polariton can be controlled by the intensity
of the control light and can be stopped by turning off the control light. The
stopped dark state polarition can be accelerated by turning on the control
light again, and the probe light is retrieved from the medium. The whole
process is unitary, therefore ideally the quantum information of photons can
be stored in the EIT medium. This is called storage of light technique. This
paper has attracted attention to the EIT, because the paper provides an
easier way to quantum memory.

Quantum Memory — motivation and world trend —

While photons are the fastest and very robust carriers of quantum informa-
tion, they do not interact with each other and are difficult to localize. In
contrast, atoms can interact with each other and can even be stopped by
conventional laser cooling techniques but they are not fast carriers of in-
formation (Fig1). Therfore one would like to employ atoms to manipulate
and store quantum information and photons to carry the information from
atoms to atoms. Such a system is termed a quantum network, which was
first proposed by J. I. Cirac [39].

A single photon state is often used as a qubit state and is one of the
most important ingredients in quantum communications. A conceptually
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Figure 1: Schematic image of light-atom interface. The disadvantage of pho-
tons can be conpensated with atoms, and vice versa. As quantum memory
connencts these two feilds, we can cancel the disadvantages of both systems
and utilize only advantages with quantum memory.

simple approach to the quantum memory of a single photon is to employ a
single two-level atom. It is possible to store and retrieve a single photon state
through coherent absorption and emission of a single photon. The interaction
Hamiltonian of this process is given by

H = gâσ̂12 + h.c., (1)

where â is the annihilation operator of the light and σ̂12 is the flipping op-
erator from the atomic states |2⟩ to |1⟩. The interaction strength g is very
weak, so placing the atom in a high-Q optical resonator is necessary to ef-
fectively increase the interaction [40, 41, 42]. Despite the enormous experi-
mental progress in this field it is technically very challenging to achieve the
necessary strong-coupling regime [43, 44, 46].

The proposal by M. Fleischhauer and M. D. Lukin [37, 38] is based on
an adiabatic transfer of the quantum state of photons to collective atomic
excitations with EIT. A collective atomic operator [47] is defined by the sum
of the flipping operators of every atom as follows:

σ̃12 =
1√
N

∑
j

σ̂
(j)
12 . (2)

Here N represents the number of atoms. The Hamiltonian describing the
interaction between light and atoms is given by

H = g
√

Nâσ̃12 + h.c.. (3)

The interaction strength between the light and the collective atomic excita-
tion is

√
N times as large as that between the light and a single atom. This

alleviates the experimental requirements with a single-atom cavity QED. In
fact, preliminary demonstrations of the proposal were soon carried out inde-
pendently by two groups [48, 49]. One of the groups also demonstrated that
the phase of the stored pulse can be manipulated by applying a magnetic
field during storage [50].
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Figure 2: Some groups on quantum memory with atomic ensembles.

Recently several groups have succeeded in storing and retrieving light of
single photons with storage of light technique [51, 52]. These experiments
have demonstrated nonclassical characteristics of the retrieved light field,
such as photon antibunching and violation of classical inequalities. Although
their demonstrations are large steps towards scalable quantum information
processing with single photons, it should be noted that the advantage of
quantum memory with atomic ensembles is not only its simplicity of im-
plimantation but also its storage capacity. While one can store only single
photons with single atoms in a high-Q cavity, atomic ensembles can be used
for storage of arbitrary states of photons1.

Arbitrary states of photons can be converted into those of atoms and
vice versa with “genuine” quantum memory, that is, the “genuine” quantum
memory connects these two fields. In order to verify such a quantum mem-
ory, one has to estimate the density matrix of the light by using homodyne
detection. Note that, unlike a photon counting method, homodyne detec-
tion is sensitive to the vacuum state. E. S. Polzik and his colleagues are
trying to map an arbitrary quantum state of light onto an atomic ensemble
from another approach. They utilize quantum nondemolition measurement
of atomic spins [53, 54] and verified storage of a coherent state of light with
a homodyne method [55], however, their method does not restore the stored
state as a radiation field. While some improvement of the system is needed
to retrieve the stored state as radiation field [56], the EIT approach can be
used for “genuine” quantum memory as it is. Figure 2 schematically shows
some groups working on quantum memory with atomic ensembles on the
world map.

For demonstration of “genuine” quantum memory with EIT, we adopted
a squeezed vacuum state as an input state. The squeezed vacuum carries

1Stricktly speaking, the number of stored photons must be much less than that of
atoms.
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lower quadrature noise than the coherent state, therefore after storage of the
squeezed vacuum, the spin noise of the atomic system is reduced. Such a
state is termed “spin squeezed state” [57] and has attracted much attentions
[58, 59, 60]. Recently the squeezed vacuum was employed for generation of
Schrödinger kitten state [61, 62], therefore storage of squeezed vacuum will
leads us to Schrödinger kitten state of atomic systems. The storage of the
squeezed vacuum will open the door to a new stage of quantum manipulation
of lights and atoms.

The experiment in this thesis is a milestone in the storage of a squeezed
vacuum. The thesis is divided into two parts:

• Generation of a Squeezed Vacuum with Periodically Poled
KTiOPO4 crystals

• Electromagnetically Induced Transparency with a Squeezed
Vacuum

In Chapter 1, the basic concept of a squeezed vacuum is presented. To
observe a quadrature noise, a balanced homodyne method has been employed
for a long time. The theory of the homodyne method is also presented.

In Chapter 2, the experiment on generation of squeezed vacuum resonant
on rubidium D1 line is reported. At the beginning of the research, there were
no reports on generation of squeezed vacuum resonant on rubidium. We
have developed two methods; one is with periodically poled lithium niobate
waveguides, which is not written in this thesis, the other method is with
periodically poled KTiOPO4 crystals in cavities. The observed squeezing
level −2.75 dB was the world record at that time. This experimental results
can be also seen in [63]

In Chapter 3, the experiment on electromagnetically induced transparency
with a squeezed vacuum is presented. This experiment was the first demon-
stration of EIT with a quantum probe light. A theory of EIT with a quantum
probe light is presented before the details of the experiment. The experimen-
tal results can also be seen in [64]

In Chapter 4, the experiment on observation of ultraslow propagation of a
squeezed vacuum is presented. To observe the squeezed vacuum after passing
through the sub-MHz EIT window, we developed a new homodyne method,
which enables us to observe the quadrature squeezing of the carrier frequency
component. With the new homodyne method, we observed the delay of the
squeezed vacuum by 1.3 µs. Although there are a few reports on the delay of
nonclassical light[65, 66], the obtained delay time in our experiment is quite
larager than the previous ones.
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Chapter 1

Squeezed State

In this chapter, the concept of a squeezed vacuum state is presented. A single-
mode squeezed state reduces the field quadrature noise for a certain direction
in the phase-space. The single-mode theory is expanded to the two-mode
theory, in which the concept of two-mode quadrature is introduced. A two-
mode squeezed state is defined as the state, of which two-mode quadrature
noise is lower than the vacuum state.

In order to observe a squeezed vacuum, a balanced homodyne method
has been employed for a long time. It should be noted that not a single-
single mode quadratrure noise but a two-mode quadrature noise is measured
with the conventional homodyne method. A theoritical treatment for the
homodyne method is also presented in this chapter.

1.1 Single-mode Electric Field Theory

A quantized single-mode electric field (in a Heisenberg picture) is written as

Ê(z, t) =
1

2

[√
2~ω

ε0V
â exp(−i(ωt − kz)) + h.c.

]
, (1.1)

where ω, k and V are the angular frequency, the wave number of the field, and
the quantization mode volume, respectively. â is an annihilation operator of
the field and satisfies the following commutation relation,

[â, â†] = 1. (1.2)

(1.1) can be transformed into

Ê(z, t) =

√
2~ω

ε0V

[
x̂ϕ cos(ωt − kz − ϕ) + x̂ϕ+π/2 sin(ωt − kz − ϕ)

]
, (1.3)

with quadrature operators defined as

x̂ϕ =
âe−iϕ + â†eiϕ

2
, (1.4)

x̂ϕ+π/2 =
âe−iϕ − â†eiϕ

2i
. (1.5)
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The commutation relation between the quadratures is given by

[x̂ϕ, x̂ϕ+π/2] =
i

2
. (1.6)

Therefore the uncertainty relation is written as⟨
(∆xϕ)2

⟩ ⟨
(∆xϕ+π/2)

2
⟩
≥ 1

16
, (1.7)

where the noise or the variance of the quadrature is defined as⟨
(∆x̂ϕ)2

⟩
=

⟨
x̂2

ϕ

⟩
− ⟨x̂ϕ⟩2 . (1.8)

1.1.1 Single-mode Vacuum State

The vacuum state |0⟩ is defined as

â |0⟩ = 0. (1.9)

The expectation value of the electric field and the square of the electric field
are calculated as

⟨0| Ê |0⟩ = 0, (1.10)

⟨0| Ê2 |0⟩ =
~ω

2ϵ0V
, (1.11)

respectively. Therefore the noise of the electric field is given by

⟨0| (∆Ê)2 |0⟩ =
~ω

2ϵ0V
. (1.12)

The expectation value of the quadrature, the square of the quadrature, and
the quadrature noise are given by

⟨0| x̂ϕ |0⟩ = 0, (1.13)

⟨0| x̂2
ϕ |0⟩ =

1

4
, (1.14)

⟨0| (∆x̂ϕ)
2 |0⟩ =

1

4
, (1.15)

respectively. Since the vacuum state satisfies the equality of (1.7), the vac-
uum state is one of the minimum uncertainty state with respect to the
quadrature.

1.1.2 Single-mode Coherent State

One of the quantum states, which seems closest to a classical picture, is called
a coherent state. A coherent state is defined by a displacement operator

D̂(α) = exp
(
αâ† − α∗â

)
, (1.16)
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where α = |α|eiθ. The displacement operator displaces the annihilation op-
erator (creation operator) by α (α∗)1

D̂†(α)âD̂(α) = â + α, (1.17)

D̂†(α)â†D̂(α) = â† + α∗. (1.18)

The coherent state |α⟩ is given by operating the displacement operator to
the vacuum state,

|α⟩ = D̂(α)|0⟩. (1.19)

Since the quadrature noise of the light in a coherent state is given by

⟨α| (∆x̂ϕ)
2 |α⟩ =

1

4
, (1.20)

the coherent state is also one of the minimum uncertainty state. The expec-
tation value of the electric field of a coherent state is given by

⟨α|Ê|α⟩ =

√
2~ω

ϵ0V
|α| cos(ωt − kz − θ). (1.21)

The electric field is proportional to |α|. The square of the electric field for
the coherent state is given by

⟨α|Ê2|α⟩ =
~ω

2ϵ0V

[
4|α|2 cos2(ωt − kz − θ) + 1

]
, (1.22)

and the noise of the electric field is written as

⟨α| (∆Ê)2 |α⟩ =
~ω

2ϵ0V
. (1.23)

It should be noted that the noise of the electric field of the coherent state
is independent on |α| and the same as that of the vacuum state. Since the
amplitude of the electric field is proportional to |α|, the ratio of the electric
field noise to the amplitude of the field is 1/|α|. This means that the noise
of the electric field, which originates the quantization, can be ignored when
the light in a coherent state is intense enough. A laser is known as one of
the lights in a coherent state.

1.1.3 Single-mode Squeezed State

The quantum theory does not restrict the way to distribute the quadrature
noise. We can consider such a state that ⟨(∆x̂ϕ)

2⟩ is smaller than 1/4 while⟨
(x̂ϕ+π/2)

2
⟩

is larger than 1/4. Such states is called a squeezed state. A
single-mode squeezed state is defined by

|ψ⟩S = ŜS(η)|0⟩, (1.24)

1We can prove the formula with Baker-Hausdorff formula: exp(ξÂ)B̂ exp(−ξÂ) = B̂ +
ξ[Â, B̂] + ξ2

2! [Â, [Â, B̂]] + ξ3

3! [Â, [Â, [Â, B̂]]] + · · · + ξn

n! [Â, [Â, [Â, . . . [Â, B̂]]]] + · · · .
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(a) (b) (c)

Figure 1.1: Phase-space image showing the uncertainty in (a) a single-mode
vacuum state |0⟩, (b) a single-mode coherent state |α⟩, and (c) a single-mode
squeezed state |ψ⟩.

with a unitary squeezing operator

ŜS(η) ≡ exp

[
1

2

[
η∗â2 − η(â†)2

]]
, η = reiθ, (1.25)

where r is called a squeezing parameter. The squeezing operator has the
following useful transformation properties

Ŝ†
S(η)âŜS(η) = â cosh r − â†eiθ sinh r, (1.26)

Ŝ†
S(η)â†ŜS(η) = â† cosh r − âe−iθ sinh r. (1.27)

The expectation values of the quadrature xϕ for the squeezed state is given
by

S⟨ψ|x̂ϕ|ψ⟩S = 0, (1.28)

S⟨ψ|x̂2
ϕ|ψ⟩S =

1

4
(cosh 2r − cos(θ − 2ϕ) sinh 2r). (1.29)

When θ = 2ϕ, the quadrature noise are simply written as

S ⟨ψ| (∆x̂ϕ)
2 |ψ⟩S =

1

4
e−2r, (1.30)

S ⟨ψ| (∆x̂ϕ+π/2)
2 |ψ⟩S =

1

4
e2r. (1.31)

This state satisfies (1.7), i.e., the squeezed state is also one of the minimum
uncertainty states and the quadrature noise ⟨(∆x̂ϕ)

2⟩ is less than that of the
vacuum state when r > 0.
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1.2 Two-mode Electric Field theory

The two-mode field consisting of ω ± δ can be written as

Ê(z, t) =
1

2
√

2

√
2~ω

ε0V
[âω+δ exp(−i((ω + δ)t − kz)) + h.c.]

+
1

2
√

2

√
2~ω

ε0V
[âω−δ exp(−i((ω − δ)t − kz)) + h.c.] . (1.32)

The commutation relations between the field operators are given by[
âω±δ, â

†
ω±δ

]
= 1, (1.33)[

âω±δ, â
(†)
ω∓δ

]
= 0. (1.34)

(1.32) can be rewritten as

Ê(z, t) =

√
2~ω

ε0V

[
X̂(δ, ϕ) cos(ωt − kz − ϕ) + X̂(δ, ϕ + π/2) sin(ωt − kz − ϕ)

]
.

(1.35)

Here the (Hermite) two-mode quadrature phase amplitudes are

X̂(δ, ϕ) =
âω+δe

−i(δt+ϕ) + â†
ω+δe

i(δt+ϕ) + âω−δe
−i(−δt+ϕ) + â†

ω−δe
i(−δt+ϕ)

2
√

2
,

(1.36)

X̂(δ, ϕ + π/2) =
âω+δe

−i(δt+ϕ) − â†
ω+δe

i(δt+ϕ) + âω−δe
−i(−δt+ϕ) − â†

ω−δe
i(−δt+ϕ)

2
√

2i
.

(1.37)

The commutation relation between two-mode quadratures is given by

[X̂(δ, ϕ), X̂(δ, ϕ + π/2)] =
i

2
, (1.38)

and the uncertainty inequality is written as⟨
(∆X̂(δ, ϕ))2

⟩⟨
(∆X̂(δ, ϕ + π/2))2

⟩
≥ 1

16
. (1.39)

1.2.1 Two-mode Squeezed State

In the previous section, we discussed a squeezed vacuum state consisting of
a single mode â. In this section, we expand the concept to the two-mode
state. The two-mode squeezed vacuum is defined as

|ψ⟩T = ŜT (η)|0⟩, (1.40)

where a two-mode squeezing operator ŜT is given by

ŜT (η) ≡ exp(η∗âω+δâω−δ − ηâ†
ω+δâ

†
ω−δ), η = reiθ. (1.41)
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The following commutation relation

[ηâ†
ω+δâ

†
ω−δ − η∗âω+δâω−δ, âω±δ] = −ηâ†

ω∓δ, (1.42)

generates a useful formula

Ŝ†
T (η)âω±δŜT (η) = exp(ηâ†

ω+δâ
†
ω−δ − η∗âω+δâω−δ)âω±δ exp(η∗âω+δâω−δ − ηâ†

ω+δâ
†
ω−δ)

= âω±δ + [ηâ†
ω+δâ

†
ω−δ − η∗âω+δâω−δ, âω±δ]

+
1

2!
[ηâ†

ω+δâ
†
ω−δ − η∗âω+δâω−δ, [ηâ†

ω+δâ
†
ω−δ − η∗âω+δâω−δ, âω±δ]] + · · ·

= âω±δ − ηâ†
ω∓δ +

1

2!
ηη∗âω±δ −

1

3!
η2η∗â†

ω∓δ +
1

4!
η2η∗2âω±δ − · · ·

= âω±δ − reiθâ†
ω∓δ +

1

2!
r2âω±δ −

1

3!
r3eiθâ†

ω∓δ +
1

4!
r4âω±δ − · · ·

= âω±δ cosh r − â†
ω∓δe

iθ sinh r, (1.43)

with Baker-Hausdorff formula.
Since the expectation values of the two-mode quadrature noise and the

square thereof are written as

T ⟨ψ|X̂(δ, ϕ)|ψ⟩T = 0, (1.44)

T ⟨ψ|X̂2(δ, ϕ)|ψ⟩T =
1

4
(cosh 2r − cos(θ − 2ϕ) sinh 2r), (1.45)

respectively, the two-mode quadrature noise is given by

T ⟨ψ|(∆X̂(δ, ϕ))2|ψ⟩T =
1

4
(cosh 2r − cos(θ − 2ϕ) sinh 2r) . (1.46)

When θ = 2ϕ, the quadrature noise is written as

T ⟨ψ|(∆X̂(δ, ϕ))2|ψ⟩T =
1

4
e−2r, (1.47)

T ⟨ψ|(∆X̂(δ, ϕ + π/2))2|ψ⟩T =
1

4
e2r. (1.48)

The quadrature noise of the two-mode vacuum state is given by

T ⟨0|(∆X̂(δ, ϕ))2|0⟩T =
1

4
, (1.49)

therefore
⟨
(∆X̂(δ, ϕ))2

⟩
is smaller than that of vacuum state, when r > 0.

1.3 Balanced Homodyne Method with Monochro-

matic Local Oscillator

In order to measure the quadarature noise of a signal light, an optical bal-
anced homodyne method has been employed for a long time. The method
is schematically shown in Fig. 1.3. A signal beam âS is mixed on the beam
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(a) (b)

Figure 1.2: Phase-space image showing the uncertainty in (a) a two-mode
vacuum state |0⟩, (b) a two-mode squeezed state |ψ⟩.

Spectrum

Analyzer

PD A

PD B

BS

Figure 1.3: A schematic of a homodyne method. A local oscillator light
is in a single-mode coherent state. The power of the differential current is
measured by a spectrum analyzer.
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Local Oscillator

Squeezed Vacuum

Frequency

Measured Components

Figure 1.4: Schematic image of a homodyne method with a monochromatic
local oscillator. The measured frequency components of the squeezed vacuum
are ω ± δ.

splitter with a monochromatic local oscillator âLO in a coherent state. Each
output âA,B is detected by the photodetectors A and B, respectively, and
the power spectrum of the differential current is measured by a spectrum
analyzer. From the input-output relation of the beam splitter, the output
fields can be written as

âA(t) =
1√
2
{âLO(t) + iâS(t)}, (1.50)

âB(t) =
1√
2
{iâLO(t) + âS(t)}, (1.51)

respectively. Since the local oscillator light is in a coherent state, the anni-
hilation operator of the field can be treated as a complex variable

âLO(t) = αe−iωt, (1.52)

α = |αmono|eiθ. (1.53)

Usually a squeezed vacuum generated by nonlinear crystal is broad (∆ω >
10MHz). We can, however, ignore the frequency components of the signal
field other than âω±δe

i(ω±δ)t, since the spectrum analyzer measures a power
of a beat δ (Fig. 1.4). Therefore the signal field can be written as

âS(t) = âω+δe
−i(ω+δ)t + âω−δe

−i(ω−δ)t. (1.54)

(1.52) and (1.54) are substituted into (1.50) and (1.51), and we obtain

âA(t) =
1√
2
(αe−iωt + iâω+δe

−i(ω+δ)t + iâω−δe
−i(ω−δ)t), (1.55)

âB(t) =
1√
2
(iαe−iωt + âω+δe

−i(ω+δ)t + âω−δe
−i(ω−δ)t). (1.56)
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The differential current between PD A and PD B is given by

∆Î = C(â†
A(t)âA(t) − â†

B(t)âB(t))

= iC[(α∗âω+δ − αâ†
ω−δ)e

−iδt + (α∗âω−δ − αâ†
ω+δ)e

iδt]

= C|αmono|[âω+δe
−i(δt+(θ−π/2)) + â†

ω+δe
i(δt+(θ−π/2))

+ âω−δe
−i(−δt+(θ−π/2)) + â†

ω−δe
i(−δt+(θ−π/2))]

= 2
√

2C|αmono|X̂(δ, θ − π/2), (1.57)

where two-mode quadrature X̂(δ, θ) is defined by (1.37). According to the

Wiener-Khintchine theorem, the spectral density function
⟨
Ŝmono

⟩
of ∆Î is

given by ⟨
Ŝmono(δ

′)
⟩

=
1

π

∫ ∞

−∞
dτ

⟨
∆Î(t)∆Î(t + τ)

⟩
cos δ′τ. (1.58)

Substituting (1.57) into (1.58), we obtain⟨
Ŝmono(δ

′)
⟩

= 8(C |αmono|)2
⟨
X̂2(δ, θ − π/2)

⟩
δ(δ′ − δ), (1.59)

where δ(δ′ − δ) is the Dirac delta function. If the signal field is in a vacuum
state, the measured noise is given by

⟨Ŝmono(δ, θ)⟩vac = 2(C |αmono|)2. (1.60)

The power spectrum of the differential current normalized by vacuum noise
level is given by

Ŝmono(δ, θ) = 4X̂2(δ, θ − π/2). (1.61)

It should be noted that the quadrature noise of various directions can be
measured by changing the phases of the local oscillator.

When the signal state |ψ⟩ is a two-mode squeezed vacuum state, the
expectation value of the power spectrum is written as

⟨ψ| Ŝmono(δ, θ) |ψ⟩ = cosh 2r − cos(ϕ − 2θ + π) sinh 2r. (1.62)

As discussed in the next chapter, ϕ represents the phase of the pump field in
the optical parametric amplifier. Without any loss of generality, we can set
ϕ = π. Figure 1.5 shows the dependence of the normalized noise power on
the phase of the local oscillator θ when the squeezing parameter r = 0.3. The
maximum squeezing (−2.6 dB) and antisqueezing (+2.6 dB) can be observed
when θ = 0 and θ = π/2, respectively.

Spatial overlapping of signal beam with local oscillator

In the previous discussion, we did not consider the spatial modes of the
signal light and the local oscillator light, which has, implicitly, been assumed
to be exactly the same. As the homodyne method measures the quadrature

23



0

1

2

3

-3

-2

-1

antisqueeze

squeeze

T
h
e 

N
o

rm
al

iz
ed

 N
o
is

e 
P

o
w

er
 (

d
B

)

Figure 1.5: The dependence of the normalized power on the phase of the
local oscillator with the picture of the phase space image. The squeezing
parameter r=0.3. The normalized noise power is usually expressed with the
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noise of the field of the same spatial mode as that of the local oscillator, the
spatial overlapping between the signal light and the local oscillator is very
important. Let ξ be the spatial overlap of the local oscillator with the signal
beam2. The local oscillator is devided into the two modes.

âLO = ξâ
∥
LO +

√
1 − ξ2â⊥

LO, (1.63)

where the spatial mode of â
∥
LO is exactly same as the signal beam, whereas

the spatial mode of â⊥
LO is orthogonal to that of the signal beam. (1.50) and

(1.51) can also devided into two modes

â
∥
A(t) =

1√
2
{â∥

LO(t) + iâ
∥
S(t)}, (1.64)

â
∥
B(t) =

1√
2
{iâ∥

LO(t) + â
∥
S(t)}, (1.65)

â⊥
A(t) =

1√
2
{â⊥

LO(t) + iâ⊥
S (t)}, (1.66)

â⊥
B(t) =

1√
2
{iâ⊥

LO(t) + â⊥
S (t)}. (1.67)

The parallel and orthogonal annihilation operators of the local oscillator in
a coherent state are written as

â
∥
LO(t) = ξαe−iωt, (1.68)

â⊥
LO(t) =

√
1 − ξ2αe−iωt, (1.69)

respectively. The power of the differential current can be given by

Ŝmono(δ, θ) = ξ2Ŝ∥
mono(δ, θ) + (1 − ξ2)Ŝ⊥

mono(δ, θ), (1.70)

with

Ŝ∥(⊥)
mono(δ, θ) = 8(C|αmono|X̂∥(⊥)(δ, θ))2, (1.71)

where X̂∥(⊥) represents the quadrature noise of the mode parallel (orthogonal)
to the local oscillator. Since the state, to which X̂⊥ operates, is a vacuum,
the normalized power spectrum of the differential current is given by

Ŝmono(δ, θ) = 4ξ2(X̂∥(δ, θ))2 + 1 − ξ2. (1.72)

The above discussion can be expanded to the case which a squeezed vac-
uum experiences the intensity loss L before the homodyne detector. The
expression of the normalized power spectrum is written as

Ŝmono(δ, θ) = 4ζ(X̂∥(δ, θ))2 + 1 − ζ, (1.73)

where we introduce the detection efficiency factor ζ = (1 − L)ξ2. Figure
1.6 shows the dependence of the power spectrum on the phase of the local
oscillator θ when the squeezing parameter r = 0.3, the visibililty ξ = 0.95,
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Figure 1.6: The dependence of the power spectrum on the phase of the local
oscillator with the picture of the phase space image. The squeezing parameter
r = 0.3, the visibililty ξ = 0.95, and the loss L = 0.2.

and the loss L = 0.2. The maximum squeezing (−1.7 dB) and antisqueezing
(+2.0 dB) is observed by varying the phase of the local oscillator. It should
be noted that the squeezing level decreases by 0.9 dB (=2.6dB − 1.7dB),
while the antisqueezing level decreases by only 0.6 dB (=2.6 dB − 2.0 dB).
The squeezing is more sensitive to the optical loss or visibility than the
anitsqueezing.

This fact can be understood as follows. In quantum theory of radiation,
the loss means not only reduction of the number of the photons, but also
invasion of the vacuum noise. Consider a pure squeezed vacuum of which
quadrature noises are given

⟨
x̂2

ϕ

⟩
=

1

8

(
=

1

2
× ⟨0| x̂2

ϕ |0⟩
)

, (1.74)⟨
x̂2

ϕ+π/2

⟩
=

1

2

(
= 2 × ⟨0| x̂2

ϕ |0⟩
)
, (1.75)

respectively. In other words, the squeezing and the antisqueezing level of
the squeezed vacuum are −3.0 dB and +3.0 dB, respectively. If half of the
squeezed vacuum is absorbed and the vacuum noise is injected to the state

2ξ is also called as a visibility.

26



(+3.0 dB)

(-3.0 dB)

(0 dB)

(0 dB) (-1.2 dB)

(+1.8 dB)

Figure 1.7: Schematic diaglam of loss. The −3dB-squeezed vacuum passes
through the loss L = 0.5. After the absorption, the observed squeezing level
is decreases to −1.2 dB.

(Fig. 1.7), the quadrature noise changes to⟨
x̂2

ϕ

⟩
→ 0.5 × 1

8
+ 0.5 × 1

4
=

3

16
, (1.76)⟨

x̂2
ϕ+π/2

⟩
→ 0.5 × 1

2
+ 0.5 × 1

4
=

3

8
, (1.77)

respectively. In other words, the squeezing and the antisqueezing level of the
squeezed vacuum changes −1.2 dB and + 1.8 dB, respectively. While the
squeezing level changes by 1.8 dB, the antisqueezing level decreases by only
1.2 dB. This difference increases if the initial squeezing level is higher. A
high level squeezed vacuum is very sensitive to optical loss. From a simple
consideration, more than −3 dB squeezing can not be obtained with the
existence of 50%-loss.

The dependences of the maximum squeezing and antisqueezing on the
detection efficiency are shown in Fig. 1.8 with the squeezing parameter
r = 0.3.
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Figure 1.8: The dependence of the power spectrum on the detection efficiency
ζ. The squeezing parameter r = 0.3.
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Chapter 2

Generation of a Squeezed
Vacuum Resonant on
Rubidium with Periodically
Poled KTiOPO4

We succeeded in the generation of a continuous-wave squeezed vacuum reso-
nant on the Rb D1 line (795nm) using periodically poled KTiOPO4 crystals
in cavities. We observed a squeezing level of −2.75±0.14 dB and an anti-
squeezing level of +7.00±0.13 dB.

To generate a squeezed vacuum, we have to construct two inevitable parts,
i.e., a doubler, and an optical parametric amplifier (squeezer). The theory
of the second nonlinear optics in the cavity is presented before the details of
the experiment.

2.1 Formalism of Wave Propagation in Non-

linear Medium[68]

First we derive equations describing a light propagating in a nonlinear medium.
Generally the polarization of a medium loses proportionality to the field un-
der an intense light. Such an intense light induces a nonlinear polarization,
proportional to the second or higher order of the field. The polarization P
can be divided into linear PL and nonlinear PNL

P = PL + PNL, (2.1)

where

PL = ε0χ
(1) · E, (2.2)

PNL = ε0χ
(2) · EE + ε0χ

(3) · EEE + · · · . (2.3)

Here χ(i) is the ith order susceptibility, which is generally (i + 1)th order
tensor. From Maxwell equations, the electromagnetic wave propagation in a
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medium is described by

∇2E − µ0ε
∂2E

∂t2
= µ0

∂2PNL

∂t2
, (2.4)

where ε = ε0(1 + χ(1)). In the following discussion, we focus on the second
order nonlinear effect, so we ignore the higher order effect. For simplicity, let
us limit our consideration to a field made up of three x-polarized plane waves
propagating in the z direction with frequencies ω1, ω2, and ω3 according to

E(ω1)(z, t) =
1

2
E1(z)ei(ω1t−k1z) + c.c., (2.5)

E(ω2)(z, t) =
1

2
E2(z)ei(ω2t−k2z) + c.c., (2.6)

E(ω3)(z, t) =
1

2
E3(z)ei(ω3t−k3z) + c.c.. (2.7)

Here Ei is a slowly varying complex amplitude and we ignore its time depen-
dence. The total instantaneous field is, then,

E(z, t) = E(ω1)(z, t) + E(ω2)(z, t) + E(ω3)(z, t). (2.8)

In order to couple the fields through the nonlinear polarization, we assume
that ω3 = ω1 + ω2. Furthermore, χ(2) is assumed to be a scalar, and P to be
parallel to x axis. (2.4) can be rewritten as

∇2E(z, t) − µ0ε
∂2E(z, t)

∂t2
= µ0ε0χ

(2) ∂2

∂t2
(
E(z, t)2

)
. (2.9)

We substitute (2.8) into the wave equation (2.9) with (2.5)-(2.7), and sepa-
rate the resulting equation into three equations, each containing only terms
oscillating at one of the three frequencies. Using the slowly varying amplitude
and phase approximation (SVAP), we obtain the basic equations describing
second order nonlinear interactions:

dE1

dz
= − iω1

2

√
µ0

ε
ε0χ

(2)E3E∗
2e−i(k3−k2−k1)z, (2.10)

dE∗
2

dz
=

iω2

2

√
µ0

ε
ε0χ

(2)E2E∗
3e−i(k1−k3+k2)z, (2.11)

dE3

dz
= − iω3

2

√
µ0

ε
ε0χ

(2)E1E2e
−i(k1+k2−k3)z. (2.12)

2.2 Optical Second-Harmonic Generation

Irradiation of a nonlinear crystal by an intense laser light (fundamental light)
generates the second harmonic wave. The second harmonic generation pro-
cess can be described by using (2.10)-(2.12). The frequency of a fundamen-
tal light is ω and the amplitude is E (ω), then we put ω1 = ω2 = ω and
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E1 = E2 = E (ω). The second harmonic light is represented by E3 = E (2ω) and
ω3 = 2ω. (2.12) is transformed into

dE (2ω)

dz
= −iω

√
µ0

ε
ε0χ

(2)
(
E (ω)

)2
ei∆kz, (2.13)

where ∆k = k3 − 2k1. For simplicity, we ignore the depletion of the funda-
mental light due to conversion to the second harmonic light. We can easily
integrate the equation, and the amplitude of the second harmonic light at
the end facet of the crystal z = d is written as

E (2ω)(d) = −iω

√
µ0

ε
ε0χ

(2)
(
E (ω)

)2 ei∆kd − 1

i∆k
. (2.14)

The output power of the second harmonic light is given by

I(2ω)(d) =
1

2
cε0|E (2ω)|2 =

(µ0

ε

)3/2

(ωε0χ
(2))2

(
I(ω)

)2
d2 sin2(∆kd/2)

(∆kd/2)2
. (2.15)

The power of second harmonic light is proportional to the square of that of
the fundamental light. We define the conversion efficiency

η =
I(2ω)

(I(ω))
2 =

(µ0

ε

)3/2

(ωε0χ
(2))2d2 sin2(∆kd/2)

(∆kd/2)2
, (2.16)

and the loss factor due to the conversion

β =
I(2ω)

I(ω)
=

(µ0

ε

)3/2

(ωε0χ
(2))2I(ω)d2 sin2(∆kd/2)

(∆kd/2)2
. (2.17)

2.2.1 Quasi Phase Matching

The phase of nonlinear polarization evolves by 2k1, and that of electric wave
by k3. ∆k = k3 − 2k1 represents the discrepancy of the wave number of
nonlinear polarization from that of the electric wave. When 2k1 = k3, these
phases get into step. This condition is referred to as phase matching con-
dition. Whereas the intensity of the field grows up by z2 when ∆k = 0,
the function of the intensity is periodic when ∆k ̸= 0, so the intensity is
suppressed.

The refraction index normally increases with ω, or k. One of the tech-
niques to satisfy the phase matching condition takes advantage of the natural
birefringence of anisotropic crystals. In practice, to generate a squeezed vac-
uum resonant on cesium the birefringence of KNbO3 has been widely used.

In our experiment, we adopted an alternative technique for the phase
matching proposed by Yariv[69]. The method, which is referred to as quasi
phase-matching, utilizes a crystal of which the nonlinear coefficient is pe-
riodically modulated by reversing the direction of one of its principal axes
periodically. The periodic nonlinear coefficient χ(2)(z) can be expanded in a
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Fourier series

χ(2)(z) = χ
(2)
0

[
∞∑

m=−∞

am exp

(
im

2π

Λ
z

)]
, (2.18)

am =
1

Λ

∫ Λ

0

χ(2)(z)

χ
(2)
0

exp

(
−im

2π

Λ
z

)
dz, (2.19)

where Λ represents the period of χ(2)(z). Substituting (2.18) into (2.10), we
obtain

dE1

dz
= −iω1

2

√
µ0

ε
ε0χ

(2)
0 E3E∗

2

∞∑
m=−∞

am exp

[
i

(
m

2π

Λ
− k3 + k2 + k1

)
z

]
.

(2.20)

If some integer m satisfies

m
2π

Λ
= k3 − k2 − k1, (2.21)

phase matching is obtained. It should be noted that we can ignore non-
phase-matched terms in (2.18), since their contribution averages out to zero

over the long integration of z. When χ(2)(z) switches from χ
(2)
0 to −χ

(2)
0 every

Λ/2,

am =
1 − cos mπ

mπ
, (2.22)

so that choosing m = 1, the effective nonlinear constant is

χ
(2)
eff = a1χ

(2)
0 =

2

π
χ

(2)
0 . (2.23)

2.2.2 Optimal Focusing in a Nonlinear Crystal

The discussion in 2.2 is based on a plane wave model, so we do not care about
the interaction volume. In practice, Gaussian beams, which have finite cross
sections, are widely used. The confocal length z0 = πw2

0n/λ characterizes
the distance from the beam waist in which the beam area is double that of
the waist. If the crystal is much shorter than the confocal length, we can
ignore the spread of the beam, and the conversion efficiency is given by

η =
(µ0

ε

)3/2
(
ωε0χ

(2)d
)2

πw2
0

sin2(∆kd/2)

(∆kd/2)2
. (2.24)

The beam of smaller waist gives a larger conversion efficiency. If the length of
the crystal is comparable to or longer than the confocal length, the trade-off
emerges. The tight focused beam has a large conversion efficiency at the focal
spot. Since the confocal length of such a beam is small, the beam spreads
rapidly with propagation in the crystal. Therefore the conversion efficiency
rapidly decreases with propagation. From a further consideration[70], the
optimal focusing condition is given by

w0 =

√
d

2.84k
. (2.25)
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2.2.3 Second Harmonic Generation with Bow-Tie Cav-
ity

P.T. 
(Input Coupler)

H.R. 

H.R. H.R. 

Crystal

Figure 2.1: Electric field and a bow-tie cavity. H.R. and P.T. represent a
high reflective mirror and a partially transmitted mirror, respectively. Those
mirrors are anti-reflective coated to the second harmonic light.

Normally the nonlinear coefficient is small, so we need an intense fun-
damental light to generate appreciable second harmonic light. The cw laser
light, however, is not intense enough, therefore we utilize the optical res-
onators or cavities to obtain relatively high conversion efficiency. The inten-
sity inside the cavity (intracavity power) exceeds its value outside a mirror
by (1 − R), where R is the mirror reflectivity.

Let us consider the bow-tie cavity, described in Fig.2.1. The transmit-
tance of the input coupler mirror is T and the other mirrors are highly reflec-
tive to the fundamental light. Every mirror is anti-reflection coated to second
harmonic light, so that the generated second harmonic light escapes from the
cavity. Ein, E0, and Er represents the electric field of the fundamental light
input to the cavity, before the crystal, and after the crystal, respectively.
Considering the phase shift by reflection, the following equation is obtained:

E0 =
√

TEin + i
√

1 − TEr. (2.26)

Considering the loss due to the conversion β = I(2ω)/I(ω) and the loss L in
the cavity other than the partial mirror and conversion loss, which is mainly
caused by mirror imperfections, we obtain the following equation

Er = −i
√

1 − L
√

1 − βE0. (2.27)

From the resonance condition of the cavity to the fundamental light, −i was
multiplied. From these two equations, the pump field of the crystal can be
written as

E0 =

√
TEin

1 −
√

1 − L
√

1 − T
√

1 − β
. (2.28)
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Using the intensity of the second harmonic light I(2ω), the loss factor β can
be written as

β =
√

ηI(2ω). (2.29)

The intensity of the second harmonic power is given by

I(2ω) = η

(
1

2
cε0 |E0|2

)
,

= η

 TIin

(1 −
√

1 − T
√

1 − L

√
1 −

√
ηI(2ω))2

2

, (2.30)

≃ η

[
4TIin

2 −
√

1 − T (2 − L −
√

ηI(2ω))

]2

, (2.31)

where Iin = 1
2
cε0 |Ein|2 is the intensity of the input power to the cavity. We

have assumed L ≪ 1 and β =
√

ηSHGISHG ≪ 1. From (2.31), the optimal
transmittance of input coupler for a given input power is given by

T =
L

2
+

√
L2

4
+ ENLPin. (2.32)

This result corresponds to an impedance-matching condition of the cavity,
i.e., zero reflection of the fundamental field by the input coupler .

2.3 Optical Parametric Amplification

The optical process that divides a highly oscillating field (pump field) ω3 =
ω1+ω2 into two lower oscillating fields ω1 and ω2 and amplifies the new fields,
is called parametric amplification. In particular, when ω1 = ω2 = ω3/2,
the process is referred to as degenerate parametric amplification. From the
basic equation of the second nonlinear process (2.10)-(2.12), the degenerate
parametric process can be described by

dE1

dz
= −iΩpe

iϕ3E∗
1 , (2.33)

Ωp =
ω1

2

√
µ

ε
ε0χ

(2) |E3| , (2.34)

where ϕ3 represents the phase of the pump field. The phase matching con-
dition has been assumed to be satisfied. The solution of (2.33) is given by

E1(z) = E1(0) cosh Ωpz − ieiϕ3E∗
1 (0) sinh Ωpz. (2.35)

The pump light was assumed to be intense and constant through the inter-
action region. Normally the nonlinear coefficient is small, and we place the
cyrstal in a cavity resonant on the signal field. Let us consider the parametric
process in a bow-tie cavity, whose configuration is the same as in the section
2.2.3.
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Figure 2.2: Electric field and a bow-tie cavity for degenerate parametric
process. The crystal is pumped by the second harmonics generated by a
doubler. The probe beam leaks into the cavity through the high reflective
mirror.

Degenerate Parametric Process with Bow-Tie Cavity

A weak seed light is injected into the cavity through one of the high reflective
mirrors (2.2). The slowly varying amplitudes are defined as follows:

E0 : amplitude before the partially reflective mirror

Er : amplitude after the nonlinear crystal

Ep : amplitude injecting into the cavity

Eout : amplitude output from the cavity

Every field is assumed not to depend on the time. Considering the phase
shift by reflection, E0 can be written as

E0 = i
√

1 − T ′Er +
√

T ′Ep, (2.36)

where T ′ is the transmission of the high reflective mirror. The length of
the crystal d is assumed to be small, so the solution of the (2.33) can be
approximately given by

E1 = −iΩpe
iϕ3dE∗

1 . (2.37)

The field after the crystal can, therefore, be written as

Er =
√

1 − T (E0 − iΩpe
iϕ3dE∗

0 ). (2.38)

Substituting (2.38) into (2.36), we obtain

E0 = i
√

1 − T ′
√

1 − T (E0 − iΩpe
iϕ3dE∗

0 ) +
√

T ′Ep. (2.39)

In the following discussion, T , T ′ and ΩpdE0 are assumed to be small, and
their second order terms are neglected. With these assumptions, (2.39) can
be transformed into

−
(

T + T ′

2

)
E0 − iΩpe

iϕ3dE∗
0 +

√
T ′Ep = 0. (2.40)
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The complex conjugated equation can be written as

−
(

T + T ′

2

)
E∗

0 + iΩpe
−iϕ3dE0 +

√
T ′E∗

p = 0. (2.41)

The solution of these equaitons is given by

E0 =
√

T
T+T ′

2
Ep − iΩpdeiϕ3E∗

p

(T+T ′

2
)2 − (Ωpd)2

. (2.42)

The optical parametric oscillation occurs when the threshold parameter

x =
Ωpd

(T + T ′)/2
= 1. (2.43)

The normalized output intensity from the cavity varies with the phase of
probe light or pump light

G(θ) =
I(ϕp)

I0

=
1 + x2 + 2x sin(ϕ3 − 2ϕp)

(1 − x2)2
, (2.44)

where I0 is the output intensity without pump light, and ϕp is the phase of
the probe lights. This can be understood as the interference between the
injected probe light and the generated new field whose phase depends on the
phase of probe light or pump light. The maximal gain G+ and attenuation
G− is given by

G± =
(1 ± x)2

(1 − x2)2
. (2.45)

If we treat the signal lights as quantized fields. The equation may be
written as

dÊ1

dz
= −iΩpe

iϕ3 Ê†
1 , (2.46)

and the solutions is

Ê1(z) = Ê1(0) cosh Ωpz − ieiϕ3 Ê†
1(0) sinh Ωpz. (2.47)

This result seems equivalent to (1.26). This indicates that this process can
be utilized for the generation of a squeezed vacuum. In the following section,
we discuss generation of a squeezed vacuum through the parametric process
in the cavity.

2.3.1 Generation of Squeezed Vacuum by Sub-threshold
Optical Parametric Oscillator

The parametric process also works for the vacuum field, and generates a
squeezed vacuum. The squeezed vacuum is output from the partially reflec-
tive mirror (output coupler) when we inject the pump field into the cavity.
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(Vacuum)

(Squeezed Vacuum)

Figure 2.3: Electric field and a bow-tie cavity for degenerate parametric
process. The crystal is pumped by the second harmonics generated by a
doubler. No other beams are incident on the cavity.

In order to understand the generation process of a squeezed vacuum, we have
to take into account the vacuum field incident on the cavity from the output
coupler.

We derive the equation relating Êin with Êcav by considering that of clas-
sical amplitudes. Under the resonance condition, the buildup of the cavity
field amplitude Ecav is described by ,

Ecav(t) =
√

TEin(t) + i
√

RE0(t), (2.48)

E0(t) = −i (Ecav(t − l/c) − iΩpdE∗
cav(t)) , (2.49)

where l is the length of the cavity. We expand the slowly varying amplitude
Ecav(t − l/c) upto the first order,

Ecav(t − l/c) = Ecav(t) −
l

c

dEcav

dt
. (2.50)

Substituting (2.48) into (2.50), we obtain

dEcav

dt
= −γ

2
Ecav − iΩpd

c

l
E∗

cav +
c
√

T

l
Ein, (2.51)

where we left the small term up to the second order. γ = cT/l denotes the
decay rate of the cavity. The corresponding equation in the quantum theory
may be given by

dÊcav

dt
= −γ

2
Êcav − iΩpe

iϕ3d
c

l
Ê∗

cav +
c
√

T

l
Êin. (2.52)

The slowly varying amplitude operators Êcav and Êin can be given by

Êcav =

√
2~ω0

ε0lA
â(t), (2.53)

Êin =

√
2~ω0

ε0cA

√
1

2π

∫
b̂in(ω)e−i(ω−ω0)tdω. (2.54)
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where â(t) and b̂in(ω) represent the intracavity field and the Fourier transform
of the leaking field into the cavity, respectively. ω0 is the carrier frequency
of the field in our interest. The normalization adopted is appropriate for a
one-dimensional traveling field, with a transverse quantization area A.

dâ(t)

dt
= −γ

2
â(t) − iΩpe

iϕ3d
c

l
â†(t) + F̂ (t), (2.55)

F̂ (t) =
√

γ

√
1

2π

∫
b̂ine

−i(ω−ω0)tdω. (2.56)

It should be noted that F̂ has the properties of the Langevin operator :⟨
F̂ (t)

⟩
= 0, (2.57)⟨

F̂ †(t)F̂ (t′)
⟩

= 0, (2.58)⟨
F̂ (t)F̂ †(t′)

⟩
=

γ

2π
δ(t − t′). (2.59)

(2.55) can be rewritten in the matrix form with its Hermite conjugate equa-
tion,

Ȧ = −MA + F , (2.60)

A =

[
â(t)
â†(t)

]
, (2.61)

M =

[
γ
2

iΩpe
iϕ3d c

l

−iΩpe
−iϕ3d c

l
γ
2

]
, (2.62)

F =

[
F̂ (t)

F̂ †(t)

]
. (2.63)

A formal solution of (2.60) is given by

A(t) = e−MtA(0) +

∫ t

0

e−M(t−t′)F(t′)dt′. (2.64)

We assume the steady state, so that the first term, proportional to the initial
field inside the cavity, is gone. Then the explicit form of the annihilation
operator inside the cavity can be described by

â(t) =

∫ t

0

e−
γ
2
(t−t′)

[
cosh Ωpd

c

l
(t − t′)F̂ (t′) + ie−iϕ3 sinh Ωpd

c

l
(t − t′)F̂ †(t′)

]
dt′.

(2.65)

Substituting (2.56) and integrating over time, we obtain,

â(t) =

√
γ

2π

∫
dω

[
e−i(ω−ω0)t(γ

2
− i(ω − ω0)) + e−

γ
2
t((γ

2
− i(ω − ω0)) cosh Ωpd

c
l
t + i(Ωpd

c
l
) sinh Ωpd

c
l
t)

(γ
2
− i(ω − ω0))2 − (Ωpd

c
l
)2

b̂in(ω)

− ie−iϕ3
(Ωpd

c
l
)e−i(ω0−ω)t + e−

γ
2
t((Ωpd

c
l
) cosh Ωpd

c
l
t + i(γ

2
− i(ω0 − ω)) sinh Ωpd

c
l
t)

(γ
2
− i(ω0 − ω))2 − (Ωpd

c
l
)2

b̂†in(ω)].

(2.66)
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Taking the long time limit, the decaying exponentials can be dropped.

â(t) =

√
γ

2π

∫
dω

e−i(ω−ω0)t(γ
2
− i(ω − ω0))

(γ
2
− i(ω − ω0))2 − (Ωpd

c
l
)2

b̂in(ω)

− ie−iϕ (Ωpd
c
l
)e−i(ω0−ω)t

(γ
2
− i(ω0 − ω))2 − (Ωpd

c
l
)2

b̂†in(ω). (2.67)

Changing the variable of integration in the second term of integral, from ω
to 2ω0 − ω, we obtain,

â(t) =

√
γ

2π

∫
dω

(γ
2
− i(ω − ω0))b̂in(ω) − ie−iϕ(Ωpd

c
l
)b̂†in(2ω0 − ω)

(γ
2
− i(ω − ω0))2 − (Ωpd

c
l
)2

e−i(ω−ω0)t.

(2.68)

The leaking field from the cavity can be written as

Eout(t) = i
√

REin(t) +
√

TE0(t)

≃ i
√

REin(t) − i
√

TEcav(t). (2.69)

The quantum mechanical equation of (2.69) may be written as

b̂out(t) = i
√

Rb̂in(t) − i
√

γâ(t). (2.70)

By the Fourier transformation, b̂out(t) and b̂in(t) can be written as

b̂out(t) =

√
1

2π

∫
b̂out(ω)e−i(ω−ω0)tdω, (2.71)

b̂in(t) =

√
1

2π

∫
b̂in(ω)e−i(ω−ω0)tdω. (2.72)

From (2.68), (2.71), and (2.72), the Fourier components of the output field
can be given by

b̂out(ω0 + δ) = i
√

Rb̂in(ω0 + δ) − iγ
(γ

2
− iδ)b̂in(ω0 + δ) − ie−iϕ3(Ωpd

c
l
)b̂†in(ω0 − δ)

(γ
2
− iδ)2 − (Ωpd

c
l
)2

,

(2.73)

where δ = ω − ω0. As we discussed in the previous chapter, what we mea-
sure with a conventional homodyne method is the square of the two-mode
quadrature and is described by

Ŝmono(δ, θ) = 4X̂2(δ, θ), (2.74)

where X̂(δ, θ) represents two-mode quadratrure operator, which is defined by
(1.37). Considering that the input state is in a vacuum state, the normalized
quadrature noise of the output field is given by⟨

Ŝmono(δ, θ)
⟩

= 1 + 2γΩpd
c

l

[
cos2

(
θ + ϕ3

2

)(
γ
2
− Ωpd

c
l

)2
+ δ2

−
sin2

(
θ + ϕ3

2

)(
γ
2

+ Ωpd
c
l

)2
+ δ2

]
.

(2.75)
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Figure 2.4: The dependence of the normalized noise power (dB) on the direc-
tion of the quadrature with ρ=0.9, x=0.2, γ=50, δ=1. When θ + ϕ3/2 = 0,
the quadrature noise are amplified and when θ +ϕ3/2 = π/2, the quadrature
noise are supressed.

Using a threshold parameter with T ′ = 0, we can rewrite the equation as

⟨
Ŝmono(δ, θ)

⟩
= 1 + 4x

 cos2
(
θ + ϕ3

2

)
(1 − x)2 +

(
2δ
γ

)2 −
sin2

(
θ + ϕ3

2

)
(1 + x)2 +

(
2δ
γ

)2

 . (2.76)

This formula can be easily expanded to a formula including the loss in
the cavity. The expression of the squeezing from the OPO with loss L can
be given by

⟨
Ŝmono(δ, θ)

⟩
= 1 + 4ρx

 cos2
(
θ + ϕ3

2

)
(1 − x)2 +

(
2δ
γ

)2 −
sin2

(
θ + ϕ3

2

)
(1 + x)2 +

(
2δ
γ

)2

 , (2.77)

where ρ = T
T+L

is referred to as the excape effieciency.

The dependence of (2.77) on θ + ϕ3/2 is shown in Fig. 2.4 with ρ=0.9,
x=0.2, γ=50, δ=1. It is found that the noise of the quadrature X(δ, π/2 −
ϕ3/2) is reduced and that of X(δ,−ϕ3/2) is amplified.

When the detection effiecinecy of the homodyne detector is ζ, (2.77) can
be transformed into

⟨
Ŝmono(δ, θ)

⟩
= 1 + 4ζρx

 cos2
(
θ + ϕ3

2

)
(1 − x)2 +

(
2δ
γ

)2 −
sin2

(
θ + ϕ3

2

)
(1 + x)2 +

(
2δ
γ

)2

 . (2.78)
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Ti:S

(Input Coupler)

PPKTP

Lock Circuit
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M4M3

M2M1

Figure 2.5: Experimental setup. Ti:S, Ti-sapphire laser; EOM, electro-optic
modulator, made of lithium niobate; PZT, monolayer piezoelectric trans-
ducer, made of lead zirconium titanate; PD, Photodetector; M1, partially re-
flective (R=0.9) flat mirror; M2, highly reflective (R>0.9999) flat mirror; M3,
highly reflective (R>0.9999) curved mirror; M4, highly reflective (R>0.9999)
curved mirror with anti-reflective coat to 397.5nm (second harmonic light).
The radii of the curved mirrors are 100mm, each.

2.4 Experiment on Generation of Squeezed

Vacuum with PPKTP crystals

2.4.1 Second Harmonic Generation with PPKTP crys-
tal

The experimental setup for a frequency doubler is shown in Fig. 2.5. A
continuous-wave Ti:sapphire laser (Coherent, MBR 110) at 795nm was em-
ployed in this experiment. The beam from the Ti:sapphire laser was phase
modulated by an electro-optic modulator (EOM). The modulation frequency
was 3.0 MHz. This modulation was utilized to lock a bow-tie cavity using
the FM side band method. The detail of the locking method is described in
[71]. Two lenses are used to couple the beam to a bow-tie cavity consisting
of two spherical mirrors (radius of curvature of 100mm) and two flat mirrors.
One of the flat mirrors (PT1) had a reflectivity of 90% at 795nm, and was
used as the input coupler while the other mirrors (one flat mirror and two
curved mirrors) were high reflectivity coated (99.99%). All the mirrors had
reflectivities of less than 5% at 397.5 nm. The round trip cavity length was
l = 520 mm, and the beam waist radius inside the crystal was 26 µm1 . The
configuration of the SHG cavity is shown in Fig. 2.6

A 1 mm wide × 1mm thick × 10 mm long periodically poled KTiOPO4

crystal, which was fabricated so that quasi phase matching is obtained at
room temperature, was used for second harmonic generation. Blocking the

1The optimal radius is calculated as 16 µm. The power of the second harmonic light
could not be stabilized with such a tight focused beam.
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Figure 2.6: The configuration of the SHG cavity.

Figure 2.7: The second harmonic intensity dependence on the fundamental
intensity. The wave length of the fundamental light was 796.525nm. The
temperature was actively stabilized at 50̊ C . The beam waist was 26 µm.
The solid line was a fitting line by (2.16).

optical pass in the cavity, we measured the dependence of the intensity of
second harmonic light to that of fundamental light (Fig. 2.7).

By fitting the experimental data with (2.16), the conversion efficiency of
the crystal was found to be 0.032 W−1. The loss of the cavity varies from 1%
to 10% depending on the beam position in the crystal. We believe that the
loss is caused by the gray tracks[72, 73, 74, 75]. Since the maximum input
(fundamental) power was approximately 400 mW, the optimal transmittance
of the input coupler ranged from 1% to 12% depending on the input power.
We selected T = 0.1.

Figure 2.8 shows the dependence of the second hamonic light from the
cavity on the input fundamental power. We obtained 104 mW of second
harmonic light for 284 mW of the incident fundamental light. We observed
instability of the blue output power when the fundamental light exceeded
approximately 300 mW. When we injected, for example, 391 mW of the
fundamental light, the intensity of second harmonic light (115 mW) was
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Figure 2.8: The depencdence of the intensity of the second harmonic light
from the bow-tie cavity on the intensity of the fundamental light. The solid
line is obtained from (2.30) with L = 0.05. The broken line is obtained,
assuuming the loss proportional to the intensity of the second harmonic light.
The loss coefficient α is 0.5.

not stable and decreased to 106 mW within a minute. The solid line in
Fig. 2.8 is obtained from (2.30) with L = 0.05. The discrepancy from the
experimental data increases with the intensity of the second harmonic light.
For KNbO3 crystal it is well-known that the second harmonic light induces
the additional loss for the fundamental light which is referred to as Blue
Light Induced Infra Red Absorption (BLIIRA)[77]. Although there are no
such reports for the PPKTP crystal, we add the additional loss proportional
to the second harmonic light to (2.30):

I = η

[
TIin

1 −
√

1 − T
√

1 − αI
√

1 − L
√

1 −
√

ηI

]2

. (2.79)

The broken line is well in agreement with the experimental data, though the
coefficient α = 0.5 is substantially larger that that of KNbO3 crystal. This
point has to be further investigated.

2.4.2 Optical Parametric Oscillation with PPKTP Crys-
tal

The experimental setup for an optical parametric oscillator is shown in Fig.
2.9. The OPO cavity also has a bow-tie ring configuration with two spherical
mirrors (radius of curvature of 50mm) and two flat mirrors. The beam waist
radius inside a 10 mm long PPKTP crystal was 21 µm 2. The cavity length

2Because of a lack of the available space, we had to construct a cavity which has a
different size from the frequency doubler.
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Figure 2.9: Experimental setup. AOM; acosuto-optic modulator; M1, highly
reflective (R>0.9999) flat mirror; M2, parially reflective (R=0.9) flat mirror;
M3, highly reflective (R>0.9999) curved mirror with anti-reflective coat to
397.5nm (second harmonic light); M4, highly reflective (R>0.9999) curved
mirror. The radii of the curved mirrors are 50mm.

was l = 627 mm. The cavity configuration is shown in Fig. 2.10. One of the
flat mirrors is used as an output coupler, whose reflectivity is 90% at 795nm.
We tapped the fundamental light from the SHG system. The tapped light is
used for the probe light and the light to lock the cavity length (lock beam).

The OPO cavity length was locked so that the frequency of the fundamen-
tal light (795nm) was resonant. Both of the probe beam and the lock beam
was injected into the cavity through one of high reflective mirrors (M1) but
they counter-propagats each other in the cavity. The leaking field of the lock
beam was detected by PD1 and the error signal for locking the cavity length
was extracted using the FM sideband method. Due to the imperfection of
the AR coating of the crystal, part of the lock beam co-propagated to the
probe beam. This co-propagating beam would interfere with the generated

P.T. 
(Output Coupler)

H.R. 

H.R. H.R. 

Crystal

23.3 mm

157.5 mm

255 mm

Figure 2.10: The configuration of the OPO cavity.
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Figure 2.11: Red (Black) curve shows the output intensity from the cavity
with (without) the pump beam of 61mW. The relative phase was varied by
using PZT1.

squeezed vacuum in the next experiment. In order to avoid the interference,
the frequency shift of 120 MHz was provided to the lock beam by an acosto-
optic modulator (AOM) and is chosen equal to the transverse-mode spacing
of the cavity. A thin glass plate provided π-phase shift to the half of the lock
beam and converted the mode from TEM00 to TEM10. When the cavity is
resonant to the frequency-shifted lock beam in TEM10 mode, the frequency
unshifted probe beam or generated squeezed vacuum in TEM00 is likewise
on resonant[76].

The transmitted probe beam from the output coupler was detected by a
photodetector (PD2). The phase of the incident probe beam was modulated
by the PZT1.

Figure 2.11 shows a typical signal from PD1. The black curve in Fig 2.11
shows the transmittance power of the probe beam without the pump beam.
The fluctuation was due to the instability of the lock system. When 61mW
of the pump beam was incident on the cavity, due to the parametric process,
the output intensity of the probe light varied with the relative phase between
the pump light and the probe light (red curve in Fig. 2.11). The parametric
gain G+ = 4.97±0.56 and attenuation G− = 0.59±0.07 were observed. Gain
is normalized by the average of the probe signal without the pump light.3

From G+ and (2.45), the pump parameter for 61mW pump beam, x = 0.55
is derived.

2.4.3 Generation of Squeezed Vacuum with PPKTP
Crystal

The whole experimental setup for generation of a squeezed vacuum is shown
in Fig. 2.12. To generate a squeezed vacuum, the probe beam was blocked.

3As we discussed before, the extra loss for the red light could be induced by the blue
light. Since the reference power varied with the loss, we should have measured the reference
with the control light when the crystal was far from the phase matching temperature.
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Figure 2.12: Experimental setup for generation of squeezed vacuum.

The generated squeezed vacuum was combined with a local oscillator at a
half-beam splitter (HBS) and detected by a balanced homodyne detector
(HD). The HD consisted of two photodiodes (Hamamatsu Photonics, S-3590
with antireflection coating for 860nm) that had a quantum effieciency of 99%.
The output of the HD was measured at the sideband component of 1MHz
using a spectrum analyzer. The circuit noise level of the homodyne detector
was 14.0 dB below the shot noise level. The visibility between the local
oscillator and the OPA output was 97%. Figure 2.13 shows the measured
quantum noise levels at a pump power of 61 mW as the local oscillator phase
was scanned. The noise level was measured with a spectrum analyzer in
zero-span mode at 1 MHz, with a resolution bandwidth of 100 kHz and a
video band width of 30 Hz. The squeezing level of −2.75dB±0.14dB and the
antisqueeezing level of +7.00 ± 0.13 dB were observed, where the standard
deviation was estimated from a fitting based on (2.78).

From the experimental results shown in the previous section, the pump
parameter x = 0.55 was obtained for 61mW of the pump beam. To caluculate
the theoritical prediction from (2.78), the other experimental parameters in
our OPO cavity are as follows:

• Transmission of the output coupler T : 0.1

• The intracavity loss L: 0.0173

• The escape efficiencyρ = T
T+L

: 0.85

• The length of the cavity l: 600mm

• The decay late of the cavity γ = c(T+L)
l

: 72 MHz

• The visibility between the squeezed vacuum and the local oscillator ξ :
0.91
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Figure 2.13: Measured quantum noise levels. (A) The settings of the spec-
trum analyzer were zero-span mode at 1MHz, resolution bandwidth=100kHz,
and video bandwidth=30Hz.

From these values, the theoretical predictions of squeezing and antisqueez-
ing levels are −4.4 dB and +8.9 dB, respectively. These theoretical values
become −4.1 dB and +8.7 dB when the effect of the circuit noise is in the
consideration. As Fig. 2.11 shown, our OPO cavity was not so stable, there-
fore it is hard to obtain the reliable gain paramter. We beleive that this
fluctuation causes the discrepancy between the experiment and the theorit-
ical prediction. We will discuss the stability condition of the cavity in the
next section.

2.5 Discussions

2.5.1 The Stability of Cavity

First we introduce a parameter, referred as to visibility, which evaluates the
spatial mode overlapping of beam 1 with beam 2. Consider electric beams
(i = 1, 2) are given by

Ei(x, y, z) = E0

√√√√ iz
(x)
0i

q
(x)
i (z)

√√√√ iz
(y)
0i

q
(y)
i (z)

exp

(
− ikx2

2q
(x)
i (z)

− iky2

2q
(y)
i (z)

)
, (2.80)

where q
(x(y))
i and z

(x(y))
0i are a beam paramters and a confocal parameter of

x(y) direction of the beam i, respectively. The beam parameter is written as

q
(x)
i (z) = z − a

(x)
0i + iz

(x)
0i , (2.81)

q
(y)
i (z) = z − a

(y)
0i + iz

(y)
0i , (2.82)

where a
(x)
0i represents the position of the beam spot.
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Figure 2.14: The dependence of the visibility on ℓ and ℓ0. Red circles indi-
cates the cavity configuration. (a) SHG cavity. (b) OPO cavity.

The visibility between these beams is given by

V =

∫∫
E1E∗

2dxdy∫∫
|E1| dxdy

∫∫
|E2| dxdy

(2.83)

=

(
4z

(x)
01 z

(x)
02

(z
(x)
01 + z

(x)
02 )2 + (a

(x)
01 − a

(x)
02 )2

× 4z
(y)
01 z

(y)
02

(z
(y)
01 + z

(y)
02 )2 + (a

(y)
01 − a

(y)
02 )2

)1/4

.

(2.84)

To design the cavity, we evaluate the visibility between the injecting beam
and after its one round trip. The visibility should be 1 as close as possible.
The stability of the cavity is determined by how much the visibility decreases
with the displacement of mirrors. The dependence of the visibility on the
cavity length l and on the distance from the curved mirror and the end facet
of the crystal l0 was calculated. Figure 2.14 shows the visibilities of the
cavities (SHG and OPO) employed in this experiment. As Fig. 2.14 shows,
both cavities are weak to the fluctuation of l0. We beleive that one of the
reasons of the instability of the cavities were caused by this weakness.

We also confirmed that the tight focused beam in the crystal also caused
instability of the cavity, which may be due to a thermal lensing effect arrising
from the blue absorption [78].

Based on the discussion above, we reconstructed the cavity. The beam
waist in the crystal was 60 µm. The configuration and the visibility of the
new cavity is shown in Fig. 2.15. Although the whole experiments presented
following sections employed the cavities in this chapter, more than −3 dB
squeezing obtained with the new cavity system.

2.6 Conclusion

We observed −2.75±0.14dB squeezing and +7.00±0.13 dB antisqueezing at
795nm, which corresponds to the D1 transition of Rb atoms. It should be
possible to achieve a higher squeezing level by increasing the visibility of the
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Figure 2.15: (a) A new cavity configuration. (b) The dependence of the
visibility on ℓ and ℓ0. Red circle indicates the cavity configuration.

homodyne system and reducing the phase fluctuation by actively stabilizing
the setup. While electromagnetically induced transparency was observed
with the squeezed vacuum in our previous work, neither slow propagation
nor storage could be realized due mainly to the low squeezing level. The
squeezing level obtained in this setup was much higher than that previously
obtained with periodically poled lithium niobate waveguides.
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Chapter 3

Electromagnetically Induced
Transparency with Squeezed
Vacuum

An experiment on electromagnetically induced transparency with a squeezed
vacuum is presented. A squeezed vacuum resonant on the 87Rb D1 line (probe
light) was injected into an optically dense rubidium gas cell with a coher-
ent light (control light). The output probe light maintained its quadrature
squeezing within the transparency window caused by electromagnetically in-
duced transparency. The result reported here is the first demonstration of
EIT with a nonclassical probe light.

Before describing the details of the experiment, we give a full quantum
description of EIT and derive the absorption coefficient and refractive index
for a quantum probe field.

3.1 Quantum Description of Electromagneti-

cally Induced Transparency

In order to consider electromagnetically induced transparency for a squeezed
vacuum, which is one of the nonclassical lights1, we have to treat a probe
light as a quantized field while an intense control light is treated as a sim-
ple classical electromagnetic field. Such description also leads us to how to
map the quantum information of the probe light onto the ground state spin
coherence.

3.1.1 Optical Bloch Equation for Electromagnetically
Induced Transparency

Consider a quasi-one-dimensional model, consisting of two co-propagating
beams passing through an optically thick medium of length L consisting of

1The nonclassical state is defined as the states which do not have a well-defined P-
representation.
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Figure 3.1: Three-level atomic system interacting with an intense coherent
light (control light) and a quantized light (probe light).

three-level atoms shown in Fig. (3.1). The x-polarized quantized probe field
can be written as (in a Schrödinger picture)

Êp(z, t) =
1

2
xÊp(z, t)e

−ikpz + c.c.. (3.1)

Here slowly varying amplitude operator Êp(z, t) is defined as

Êp(z, t) =

√
2~ωp

ϵ0V
âp(z, t), (3.2)

where âp and V are an annihilation operator and a quantization volume,
which, for simplicity, is chosen to be equal to the interaction volume. The
probe field couples one of the ground states |1⟩ to the excited state |2⟩. The
other ground state |3⟩ is coupled with the excited state |2⟩ by a control light,

Ec(z, t) =
1

2
yEc(z, t)e

i(ωct−kcz) + c.c.. (3.3)

The Hamiltonian H for this system is given by

Ĥ =
∑

j

[~ω1σ̂
j
11 + ~ω2σ̂

j
22 + ~ω3σ̂

j
33 +

1

2
ε0V Ê†

p(zj, t)Êp(zj, t)

− ℘
(x)
12 Êp(zj, t)σ̂

j
12 − ℘

(y)
32 Ec(zj, t)σ̂

j
32 + h.c.], (3.4)

where ℘
(i)
ab denotes an i direction component of the dipole matrix element

between the states |a⟩ and |b⟩. zj represents the position of the j th atoms.
We defined the atomic flip operators at zj as

σ̂j
ab ≡ |a⟩jj⟨b| . (3.5)

In order to remove the time dependence of the Hamiltonian by a classical
electromagnetic field (control light), we move to a new rotating frame by a
transformation of

Û(t) = exp[i
∑

j

((ω2 − ωp)σ̂
j
11 + ω2σ̂

j
22 + (ω2 − ωc)σ̂

j
33 + ε0Ê†

p(zj, t)Êp(zj, t))t].

(3.6)
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The effective Hamiltonian is written as

Ĥeff/~ =
∑

j

[
δpσ̂

j
11 + δcσ̂

j
33 − gâp(zj, t)σ̂21e

−ikpzj − Ωcσ̂32e
−ikczj + h.c.

]
,

(3.7)

where g =
√

ωp

2~ϵ0V
℘21 and Ωc = ℘32Ec

2~ are the coupling constant between an

atom and the probe field and the Rabi frequency of the control field. We
have made the rotating wave approximation. If the slowly varying quantum
amplitude does not change in a length interval ∆z, which contains Nz ≫ 1
atoms, we can introduce continuum atomic variables,

σ̂ii(z) =
1

Nz

∑
zj∈z∼z+∆z

σ̂j
ii, (3.8)

σ̂21(z) =
1

Nz

∑
zj∈z∼z+∆z

σ̂j
21e

−ikpzj , (3.9)

σ̂32(z) =
1

Nz

∑
zj∈z∼z+∆z

σ̂j
32e

−ikczj , (3.10)

With these operators, we can rewrite the effective Hamiltonian as

Ĥeff/~ =
∑

z

Nz [δpσ̂11(z) + δcσ̂33(z) − gâp(z, t)σ̂21(z) − Ωcσ̂32(z) + h.c.] .

(3.11)

Taking the continuum limit, the effective Hamiltonian can be written in terms
of the locally-averaged atomic operators as

Ĥeff/~ =
N

L

∫
dz [δpσ̂11(z) + δcσ̂33(z) − gâp(z, t)σ̂21(z) − Ωcσ̂32(z) + h.c.] ,

(3.12)

where N is the number of atoms in the interaction volume. The evolution of
the Heisenberg operator can be given by the following equation:

˙̂σ11 = −ig(âpσ̂21 − â†
pσ̂12) + γ1σ̂22 + F̂1, (3.13)

˙̂σ22 = ig(âpσ̂21 − â†
pσ̂12) − iΩc(σ̂32 − σ̂23) − γ2σ̂22 + F̂2, (3.14)

˙̂σ33 = iΩc(σ̂32 − σ̂23) + γ3σ̂22, +F̂3, (3.15)

˙̂σ12 = −(−iδp + γ12)σ̂12 + igâp(σ̂11 − σ̂22) + iΩcσ̂13 + F̂12, (3.16)

˙̂σ13 = −[i(δc − δp) + γ13]σ̂13 + iΩcσ̂12 − igâpσ̂23 + F̂13, (3.17)

˙̂σ23 = −(iδc + γ23)σ̂23 − igâ†
pσ̂13 − iΩc(σ̂33 − σ̂22) + F̂23. (3.18)

We have included the decays of atomic dipole: γ2 = γ1 +γ3, γ12, and γ23 and
the decay of the spin coherence between the ground states γ13 with the asso-
ciated Langevin noise operators, whose explicit form is not of interest here.
This is a set of Heisenberg Langevin equations describing electromagnetically
induced transparency.
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3.1.2 Absorption Coefficient and Refractive Index by
EIT

From the steady state solution of Heisenberg Langevin equations, the in-
duced polarization of the probe transition can be derived. We assume that
the control field is resonant on |2⟩-|3⟩ transition, i.e., δc = 0 and the Rabi
frequency of the control light is much larger than that of the probe light.
Most of the atoms are, therefore, in a |1⟩ state, i.e., σ̂11 ≈ 1, σ̂22 ≈ 0, σ̂33 ≈ 0.
Neglecting the second order term of âp, we obtain

σ̂12 =
igâp

γ12 − iδp + Ω2
c

γ13−iδp

. (3.19)

The induced polarization between |1⟩-|2⟩ transition of the medium is given
by the sum of the polarization of whole atoms

P̂ = ρÛ(t)
(
℘

(x)
12 σ̂12 + ℘

(x)
21 σ̂21

)
Û †(t) (3.20)

= iε0
g2N

ωp

1

γ12 − iδp + Ω2
c

γ13−iδp

Êp(z, t)e
iωt + c.c., (3.21)

where ρ represents the atomic density. Therefore the susceptibility for the
probe field of the medium can be written as

χ = i
2g2N

ωp

1

γ12 − iδp + Ω2
c

γ13−iδp

(3.22)

= iρ
℘2

12

~ε0

1

γ12 − iδp + Ω2
c

γ13−iδp

. (3.23)

The refractive index n and the absorption coefficient κ are given by

n = 1 + Re[χ]/2, (3.24)

κ = Im[χ], (3.25)

respectively.

As Figure 3.2 shows, the transparency region and the steep dispersion
appears around the resonant frequency.

3.2 Experiment on Electromagnetically Induced

Transparency with Squeezed Vacuum

We carried out the experiment on electromagnetically induced transparency
with a squeezed vacuum. We generated a cw-squeezed vacuum resonant
on the 87Rb D1 line (795 nm) by using two independent periodically poled
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(a) (b)

Figure 3.2: (a) Absorption coefficient and (b) refractive index (in arbitrary
units) as a function of normalized detuning δp/γ12.
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Figure 3.3: Schematic of the experiment setup. Ti:S, Ti:sapphire laser; PBS,
polarizing beam splitter; LN, periodically poled MgO:LiNbO3 waveguide;
PBP, Pellin Broca prism; GL, Glan laser prism; BS, beam splitter; PZT,
piezoelectric transducer; DM, dichroic mirror; PD, photodetector.
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MgO:LiNbO3 waveguides (LN1,2 in Fig. 3.3)[67]. We employed ridge waveg-
uides, 5.0 µm wide × 3.0 µm thick 8.5 mm long2. They are fabricated so
that quasi-phase-matching is obtained at room temperature. We coupled 269
mW of linearly polarized light from a Ti:sapphire laser into LN1 with 40%
efficiency and generated 54 mW of second harmonic light. We separated the
second harmonic light from the fundamental light by using a Pellin Broca
prism and a dichroic mirror (DM1). Only the second harmonic light was in-
jected into LN2 with 40% coupling efficiency, by which the squeezed vacuum
was generated through the degenerate parametric process. The squeezed vac-
uum was separated from the second harmonic light by using DM2 and LN2.
The power and spectral width of the squeezed vacuum were about 400 nW
and 14 nm, respectively. In order to avoid any loss of the squeezed vacuum,
we removed Glan laser prisms (GL1,2), λ/4 plates, and an 87Rb glass cell
and directly overlapped the squeezed vacuum with a local oscillator (5 mW)
by a beam splitter. We measured quadrature noise of the squeezed vacuum
by a balanced homodyne detector (PD1,2) and a spectrum analyzer. The
experimental result is shown in Fig. 3.4. The observed squeezing level (−0.9
dB) and antisqueezing level (+1.3 dB) were independent of the spectrum
analyzer center frequency up to 100 MHz because our system has no cav-
ity, unlike the standard optical parametric oscillator. The bandwidth of the
squeezing was limited by that of the preamplifier in the homodyne detector.
As far as we know, this is the first time wideband squeezed vacuum has been
generated in cw mode using MgO:LiNbO3 waveguides.

We employed a pure 87Rb vapor cell filled with 5 torr of 4He buffer gas
as the EIT medium. The 10-cm-long, 30-mm-diameter cell was magnetically
shielded by a threefold magnetic shield. The temperature was actively sta-
bilized to 48̊ C , which corresponds to an atomic density of approximately
1011 cm−3. We employed the D1 line 52S1/2, F=2 → 52 P1/2, F=2 transition
for control and probe fields. Two circularly polarized lights (control σ+ and
probe σ−) coupled pairs of Zeeman sublevels of electronic ground states with
magnetic quantum numbers differing by two, via the excited state.

Before the experiment with a squeezed vacuum, we performed EIT with
a coherent probe light. We cut the second harmonic light incident on LN2
and injected a weak fundamental light into LN2 by removing the beam block.
We employed the 2.3 mW/cm2 output beam (diameter 1 mm) from LN2 as
the probe light. (Because the input power was so weak, one can neglect
the effect of second harmonic generation.) The control and probe lights
polarized orthogonally to each other were overlapped using GL1 and were
converted to σ+ and σ− circularly polarized lights by a λ/4 plate in front of
the cell. The intensity of the input control light was 830 mW/cm2. After
passing through the cell, the probe light was separated from the control
light by using a λ/4 plate and GL2. A flipper and a photodetector (PD3)
were used to monitor the transmitted intensity of the probe light. When a
homogeneous magnetic field is applied to the cell along the light axis using a

2Using waveguides of nonlinear crystals is easier to generate a squeezed vacuum than
using nonlinear crystals in cavities, though the squeezing level of the squeezed vacuum
with waveguides was limited −1.5dB in our experiment.
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Figure 3.4: The measured quadrature noise when the squeezed vacuum in-
cident on the homodyne detector (red trace). The black traces represents
the vacuum noise level. The settings of the spectrum analyzer were zero-
span mode at 15MHz, resolution bandwidth = 300kHz, and video band-
width=300Hz. The same (anti)squeezing level was observed with the center
frequency of 400kHz up to 100MHz.

solenoid coil, energy of |F = 2, mz = 2⟩ state varies due to the Zeeman effect.
Thus one can change the effective two-photon detuning. Figure 3.5 illustrates
a typical absorption spectrum for the probe light obtained by scanning the
magnetic field. When the control light was cut off, 79% of the probe light was
absorbed, independent of the magnetic field [(A) in Fig. 3.5]. In contrast,
when using the control light, the absorption was reduced up to 31% at the
zero-magnetic field and the width of the transparency window was 2.6 MHz,
which is narrower than the natural line width of 87Rb (6 MHz) ((B) in Fig.
3.5).

Next, we performed an EIT experiment with the squeezed vacuum. We
again blocked the weak fundamental light and injected the second harmonic
light into the LN2. The generated squeezed vacuum (10µW/cm2) was used
as the probe light and injected into the cell with the control light. We
measured the quadrature noise of the probe light passing through the cell
using the balanced homodyne detector. Figure 3.6 depicts the results of the
balanced homodyne detection with and without the control light, where no
magnetic field was applied to the cell and the quadrature noise level was
normalized by the shot noise (−69.9 dBm). The noise was measured with
the spectrum analyzer operated in the zero span at a center frequency of 400
kHz, a resolution bandwidth of 100 kHz, and a video bandwidth of 3 Hz.
When the control light was cut off, the squeezing of the transmitted probe
light was dramatically suppressed (Fig. 3.6(b)). Squeezing was restored to
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Figure 3.5: Dependence of absorption of the probe light in the coherent state
on the magnetic field applied to the 87Rb cell. (A) Without the control light,
(B) with the control light.

0.18±0.03 dB with the control light, which indicates that the opaque atomic
medium became transparent for the squeezed vacuum due to the existence
of the control light.

One might consider that the experimental results obtained above were
due to hyperfine pumping, i.e., the control light pumped almost all atoms in
the F=2 ground state to F=1 state and the atomic medium became trans-
parent for the squeezed vacuum. In order to check this, we measured the
dependences of the squeezing level of the output probe beam on the applied
magnetic field (Fig. 3.8(a)) and on the center frequency of the spectrum
analyzer (Fig. 3.8(b)). Both cases change the measured noise, reflecting the
transparency window (Fig. 3.7).

Solid circles with error bars in Fig. 3.8(a) represent experimentally ob-
tained squeezing levels for various magnetic fields. The maximum noise re-
duction was obtained at a zero-magnetic field, where maximum transparency
was obtained in the semiclassical experiment (see (B) in Fig. 3.5). Red circles
in Fig. 3.8(b) with error bars represent the squeezing level of the probe light
passing through the 87Rb cell under the EIT condition. The squeezing level
decreased as the center frequency of the spectrum analyzer increased, which
also corresponds to the semiclassical result ((B) in Fig. 3.5). Blue circles
with error bars are data when the cell was cooled to room temperature and
the laser was detuned far from the atomic resonance. The squeezing level
was independent of the center frequency of the spectrum analyzer.
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Figure 3.6: Balanced homodyne signals. Red traces are the quadrature noises
of the probe lights passed through the Rb cell (a) with the control light and
(b) without the control light. Black traces represent the vacuum noises (shot
noises). Each data were normalized by the average of the vacuum noise
(−69.9 dBm).

3.3 Discussion

First, we determine the input state to the EIT medium from the experimen-
tal data shown in Fig. 3.4. The squeezed vacuum generated in a PPLN
waveguide can be considered two-mode squeezed vacuum, which is given by
(1.24) and (1.25) . From (1.73), the observed noise power of the two-mode
squeezed vacuum is given by⟨

Ŝ(δ, θ)
⟩

= ζ cosh 2r − cos ϕ sinh 2r + 1 − ζ, (3.26)

where ζ, r, ϕ are the detection efficiency, the squeezing parameter and the
relative phase between the squeezed vacuum and the local oscillator. By the
fitting with (3.26), we estimated ζ=0.43 and r=0.31.

We then discuss the results shown in Figs. 3.8(a) and 3.8(b). The
squeezed vacuum passed through the EIT window was observed in the ex-
periment. We simulate the experiment with the two-mode squeezed vacuum
passing through a beam splitter of which transmission T (ω) is dependent on
the frequency (Fig. (3.9)). The output field â(A) from the beam splitter is
given by

â
(A)
ω±δ =

√
T (ω)â

(1)
ω±δ + i

√
1 − T (ω)â

(2)
ω±δ, (3.27)

where â
(1)
ω±δ and â

(2)
ω±δ are the input fields to the beam splitter. We assume that

the one of the fields input to the port 1 is in a two-mode squeezed vacuum
state |ψ⟩1 and the other fields input from the port 2 is in a vacuum state
|0⟩2. The expectation value of the square of the quadrature of the output
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Figure 3.7: Schematic image of the experiment on (a) the depenedence of the
squeezing level on the magnetic field and (b) the dependence of the squeez-
ing level on the center frequency of the spectrum analyzer. The black curves
show the EIT window T (ω). The broken orange lines represent the observed
frequency components of the squeezed vacuum with a monochromatic ho-
modune method.
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Figure 3.8: (a) Measured squeezing level of the probe light passing through
the cell as a function of the applied magnetic field. (b)Same as (a) but
as a function of the center frequency of the spectrum analyzer. The red
dots correspond to the squeezing levels when the laser was resonance (cell
temperature 48̊ C ) and blue dots correspond to that when the laser was far
off resonance (cell temperature 25̊ C ). Each error bar represents ± standard
deviation. The curved solid lines represent numerical results of the squeezing
level based on (3.28) and the plots (B) in Fig. 3.5.

BS
Homodyne

Detector

Figure 3.9: A freqnecy dependent beam splitter T (ω). The quadrature of
squeezed vacuum is measured after passing through the beam splitter.
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field â(A) is given by

1 ⟨ψ|2 ⟨0| X̂(δ, θ)2 |0⟩2 |ψ⟩1

=
1

4

[(
T+ + T−

2

)
cosh 2r −

√
T+T− cos(ϕ − 2θ) sinh 2r +

(
1 − T+ + T−

2

)]
,

(3.28)

where T± represents T (ω ± δ). Combining (3.28) with (3.26), we obtain

1 ⟨ψ|2 ⟨0| Ŝ(δ, θ)2 |0⟩2 |ψ⟩1

= ζ

(
T+ + T−

2

)
cosh 2r − ζ

√
T+T− cos(ϕ − 2θ) sinh 2r +

(
1 − ζ

T+ + T−

2

)
(3.29)

The transmittance T± can be directly obtained from the experiment results
in (B) of Fig. 3.5. The curved lines in Figs. 3.8(a) and 3.8(b) represent
numerical results of the squeezing level based on (3.29) and the plots (B)
in Fig. 3.5. Although we changed the detection efficiency from ζ=0.43 to
ζ=0.15, the experimental results agree well with the numerical ones, which
indicates the transparency in our experiment was caused by EIT not by sim-
ple hyperfine pumping from F=2 to F=1. The detection efficiency decreased
by 34%. The reflection losses at the end facets of the cell and the Glan laser
prism are 16% and 7%. There still rests unknown loss of 57%. This may
be explained by the reduction in homodyne detection efficiency due to the
distortion of the spatial profile of the squeezed vacuum which was caused by
imperfect overlapping between the control light and the squeezed vacuum.

3.4 Conclusion

We demonstrated EIT with a squeezed vacuum. Squeezing was maintained
only when the control light was injected into the atomic medium and the ob-
tained transparency window was narrower than the atomic natural linewidth.
The experimental results shown in this chapter is the first evidence that EIT
works for nonclassical lights.
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Chapter 4

Ultraslow Propagation of
Squeezed Vacuum with
Electromagnetically Induced
Transparency

In the previous chapter, observation of electromagnetically induced trans-
parency with a squeezed vacuum was presented. However any dynamical
effects, such a ultraslow propagation or storage of a squeezed vacuum, could
not demonstrated, mainly due to poor squeezing of the probe light and to
the transparency window being too broad.

The squeezing level increased by changing from the PPLN waveguides
to the PPKTP crystals in cavities as the source of a squeezed vacuum. In
addition, we developed a new homodyne method with a bichromatic local
oscillator, which enables us to observe a squeezed vacuum which has passed
through sub-MHz EIT window and ultraslow propagation of a squeezed vac-
uum pulse, which is a large step to genuine atomic quantum memory of
photons.

4.1 Group Velocity and Transparency Win-

dow

The group velocity of a pulse is given by

vg =
c

n + ω ∂n
∂ω

≃ c

1 + ω ∂n
∂ω

, (4.1)

where n is the refractive index of the medium. Therefore the steep dispersion
reduces the group velocity of the pulse. By the Taylor expansion of (3.23)
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around δp = 0, the complex susceptibility can be written as

χ = iρ
℘2

12

~ε0

1

γ12 − iδp + Ω2
c

γ13−iδp

= ρ
℘2

12

~ε0

(
1

Ω2
c

δp + i
γ12

Ω4
c

δ2
p + O(δ3

p)

)
. (4.2)

The first term gives the slope of the refractive index around the resonant
frequency. The group velocity in the EIT medium is given by

vg ≃
c

1 + ω
ρ℘2

12

~ε0Ω2
c

. (4.3)

We can reduce the group velocity by decreasing the intensity of the control
light.

The second term of (4.2) gives the width of the EIT window. The trans-
mission of the EIT medium is given by

T (δ) = exp(−κkz) ≃ exp(−δ2/∆ω2
tr), (4.4)

with

∆ωtr =

√
~ε0

ρ℘2
12γ12kz

Ω2
c . (4.5)

The width of the window is inverse proportional to the intensity of the control
light.

4.2 Balanced Homodyne Method with Bichro-

matic Local Oscillator

When the homodyne method is employed for the measurement of the quadra-
ture noise of the light after passing through the EIT medium, the width of
the EIT window is a very important quantity. Because what we observe
with a homodyne method with a monochromatic local oscillator is not the
quadrature noise of the carrier frequency ω of the signal light but that of
side band components ω± δ (Fig.1.4). Therefore these two components have
to be transmitted through the medium when the vacuum noise reduction
by the squeezed vacuum is observed. One might think that we can observe
the quadrature squeezing of the light which has passed through the narrow
EIT window by selecting small center frequency of the spectrum analyzer.
However, experimentally, the center frequency should be selected more than
hundreds kHz because of the electric noise of the apparatus in the lower
frequency region.

While several schemes are available to observe around quadrature squeez-
ing of the carrier frequency component [79], we have developed a new homo-
dyne method with a bichromatic local oscillator.
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Figure 4.1: A schematic of a bichromatic homodyne method. The employed
local oscillator consists of ω ± δ and the center frequency of the spectrum
analyzer is δ.

A bichromatic homodyne method is shown in Fig. 4.1. A bichromatic
local oscillator, given by (in Heisenberg picture)

âLO(t) = âω+δe
i(ω+δ)t + âω−δe

i(ω−δ)t, (4.6)

is mixed with a signal light by a beam splitter. The outputs from the beam
splitter is detected by commercial photodetectors, respectively. The power
of the differential current is measured by a spectrum analyzer with the center
frequency δ. What we need to consider here are the frequency components
of the signal light of ω and ω ± 2δ. The signal light is written as

âS(t) = âωeiωt +
1√
2
âω+2δe

i(ω+2δ)t +
1√
2
âω−2δe

i(ω−2δ)t. (4.7)

Substituting (4.6) and (4.7) into the input-output equations of a beam splitter
(1.50) and (1.51), we obtain

âA(t) =
1√
2
(âω+δe

i(ω+δ)t + âω−δe
i(ω−δ)t

+ iâωeiωt + i
1√
2
âω+2δe

i(ω+2δ)t + i
1√
2
âω−2δe

i(ω−2δ)t), (4.8)

âB(t) =
1√
2
(iâω+δe

i(ω+δ)t + iâω−δe
i(ω−δ)t

+ âωeiωt +
1√
2
âω+2δe

i(ω+2δ)t +
1√
2
âω−2δe

i(ω−2δ)t). (4.9)

The differential current is described by

∆Î = C(â†
A(t)âA(t) − â†

B(t)âB(t))

= C[(â†
ω−δâωeiπ/2 + âω+δâ

†
ωe−iπ/2

+
1√
2
(â†

ω−δâω−2δe
i(−2δt+π/2) + â†

ω−δâω+2δe
i(2δt+π/2)

+ âω+δâ
†
ω−2δe

−i(−2δt+π/2) + âω+δâ
†
ω+2δe

−i(2δt+π/2)))eiδt + h.c.].
(4.10)
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We assume that the bichromatic local oscillator light consists of two coher-
ent lights of ω ± δ and we replace âω±δ with αω±δ/

√
2. For simplicity, the

intensities of those lights are the same:

âω+δ =
1√
2
|αbi| eiθ+ , (4.11)

âω−δ =
1√
2
|αbi| eiθ− , (4.12)

where θ± represent the phases of the local oscillator of âω±δ. This assumption
simplify the expression of the differential current into

∆Î =
1√
2
C|αbi|[(aωe−i(θ−−π/2) + â†

ω+δe
i(θ+−π/2)

+
1√
2
(âω−2δe

i(−2δt−(θ−−π/2)) + âω+2δe
i(2δt−(θ+−π/2))

+ â†
ω−2δe

−i(−2δt−(θ−−π/2)) + â†
ω+2δe

−i(2δt−(θ+−π/2))))eiδt + h.c.]

=
√

2C|αbi|ei
θ+−θ−

2 [(x̂(θ++θ−−π)/2 + X̂(2δ, (θ+ + θ− − π)/2))eiδt + h.c.].
(4.13)

With the Wiener-Khintchine theorem, the power spectrum of the differential
current is given by

Ŝbi(δ) = 2(C|αbi|)2(x̂(θ++θ−−π)/2 + X̂(2δ, (θ+ + θ− − π)/2))2

= 2(C|αbi|)2(x̂2
(θ++θ−−π)/2 + X̂2(2δ, (θ+ + θ− − π)/2)

+ 2x̂(θ++θ−−π)/2X̂(2δ, (θ+ + θ− − π)/2)). (4.14)

When the signal state is in a vacuum state or squeezed vacuum state, the
last term can be eliminated, and we obtain

Ŝbi(δ) = 2(C|αbi|)2x̂2
(θ++θ−−π)/2 + 2(C|αbi|)2X̂2(2δ, (θ+ + θ− − π)/2).

(4.15)

The noise power normalized by the vacuum noise is thus written as

Ŝbi(δ) = 2x̂2
(θ++θ−−π)/2 + 2X̂2(2δ, (θ+ + θ− − π)/2). (4.16)

The schematic image of the bichromatic homodyne method is shown in Fig.
4.2(a).

Consider the case that the quadrature noise of the two-mode squeezed
vacuum is observed after the EIT window T (ω). The bandwidth of the
squeezed vacuum is limite by T (ω). The observed quadratrure noise is give
by

Ŝbi(δ) =
1

2
[T0 cosh 2r − T0 cos ϕ sinh 2r + (1 − T0)]

+
1

2

[(
T+ + T−

2

)
cosh 2r −

√
T+T− cos ϕ sinh 2r +

(
1 − T+ + T−

2

)]
.

(4.17)
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where T0 and T± indicate T (ω) and T (ω±δ), respectively. When the medium
is optically thick enough and the width of the EIT window is narrower than
2δ, the second term approaches 1/2 (the vacuum noise), i.e., the observable
squeezing level is limited to −3 dB (Fig. 4.2(b)).

Local Oscillator

Squeezed Vacuum

Frequency

Measured Components

Local Oscillator Local Oscillator

Squeezed Vacuum

Frequency

Measured Components

Local Oscillator

Vacuum noise Vacuum noise

(a) (b)

Figure 4.2: Schematic image of the bichromatic homodyne method. The
local oscillator consists of âω±δ. (a) The bandwidth of the squeezed vacuum
is broad enough. (b) The bandwidth of the squeezed vacuum is narrower than
2δ. The bichromatic method detects the vacuum noise of ω ± 2δ. Therefore
the observed squeezing level was limited to −3 dB.

4.3 Experiment on Ultroslow Propagation of

Squeezed Vacuum

4.3.1 Experiment on Observation of Narrow EIT Win-
dow with Squeezed Vacuum

The experimental setup is schematically shown in Fig. 4.3. A Ti:sapphire
laser (Ti:S laser 1) was tuned to the D1 line (52S1/2, F=1 → 52P1/2, F=2)
which corresponds to a probe transition. The beam from the other Ti:sapphire
laser (Ti:S laser 2) was diffracted by an acousto-optical modulator (AOM) 1
and was used for the control field. In this experiment, the bichromatic homo-
dyne method was employed for the measurement of the quadrature squeezing
of the carrier frequency of a squeezed vacuum. The method is sensitive to
the noise of the carrier frequency, therefore lights other than the squeezed
vacuum should not be incident on the homodyne detector. The glan laser
prism (GL) was used for splitting the control light from the probe light. The
extinction ratio of the prism was, however, 10−5 so 0.01% of the control light
was incident on the homodyne detector. Therefore two hyperfine ground
states F=1 and F=2 was employed for the ground states of EIT configura-
tion in this experiment. The frequencies of the control light and the probe
light are different by the amounts of the hyperfine splitting (≃6.834GHz).
To observe the sub-MHz EIT window, the difference of the frequencies of the
control light and probe light should not be fluctuated by more than 1 MHz
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Figure 4.3: Experimental setup for observation of squeezed vacuum after
passing through the sub-MHz EIT window. Amp., RF amplifier; S. A.,
spectrum analyzer.

during the observation. In order to stabilize the frequency of the control
light, we employed a feed-forward method [80] and the frequency was able to
be scanned around the 52S1/2, F=2 → 52P1/2, F=1 transition by tuning the
frequency of a synthesizer. We employed a pure 87Rb vapor cell filled with 5
torr of 4He buffer gas as the EIT medium. The 75-mm-long, 25-mm-diameter
cell was placed inside a three-layer magnetic shield and the residual magnetic
field was less than 10 µG.

First, we performed the experiment to confirm the validity of the theory
described in 4.2. To avoid any absorption loss by the rubidium, the laser
was detuned far from the atomic resonance. The power of the differential
current from a homodyne detector was measured with the bichromatic local
oscillator light (0.8 mW ×2).

The bichromatic local oscillator light ω±1 MHz was produced by driving
AOM2, 3, and 4 with RF frequencies of 80 MHz, 79 MHz and 81 MHz,
respectively. All driving signals were obtained by amplifying the outputs
from the signal generators, whose reference clocks were synchronized with
a rubidium atomic clock. The experimental result shown in Fig. 4.4(a) is
obtained with varying the relative phase between local oscillator and the
squeezed vacuum. The black trace was obtained when the squeezed vacuum
was blocked before the homodyne detector. When the squeezed vacuum was
incident on the homodyne detector, 1.53±0.20 dB attenuation 3.66±0.21 dB
amplification were observed (red trace in Fig. 4.4(a)).

The monochromatic local oscillator (1.6 mW) could be obtained in the
same experimental setup by turning off AOM4 and driving AOM2 and AOM3
with the same RF frequency, and the quadrature noise of the squeezed
vacuum was measured. The experimental result is shown in Fig. 4.4(b).
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Figure 4.4: Red traces represent balanced homodyne signals of the probe
light detuned far from the atomic resonance with (a) a bichromatic LO and
(b) a monochromatic LO. Black traces represent the vacuum noise level. We
normalized the quadrature noise levels using the vacuum noise power.

1.60±0.12 dB attenuation and 3.71±0.12 dB amplification were observed
with the squeezed vacuum input to the homodyne detector.

The bandwidth of the OPO cavity (10 MHz) was much larger than 2
MHz, therefore the quadrature noise of the carrier frequency and the two-
mode quadrature noise up to 2 MHz are the same. i.e.,⟨

x̂2
⟩
≃

⟨
X̂2(δ = 1MHz)

⟩
≃

⟨
X̂2(δ = 2MHz)

⟩
. (4.18)

In such a case, the normalized quadrature noises measured with a bichromatic
method and with a monochromatic method are the same from (1.61) and
(4.16). ⟨

Ŝbi(δ, θ)
⟩

=
⟨
Ŝmono(δ, θ)

⟩
. (4.19)

Therefore there is no discrepancy between the prediction based on (4.16)
and the experimental results. Since the frequency components outside the
bandwidth OPO cavity is just in a vacuum state, if we selected a center
frequency of the spectrum analyzer larger than the bandwidth OPO cavity,
we could have measured the squeezing around only carrier frequency compo-
nents. The bandwidth of our homodyne detector was, however, 2MHz, which
was determined by the capacitance of the detector and the GB product of the
operational amplifier (AD829). Therefore we could not observe the squeezing
around only carrier frequency components.

The bichromatic method enables us to observe the squeezing after the
squeezed vacuum passes through the sub-MHz EIT window, because the
single-mode quadrature noise around the center frequency can be observed.
The experiment was carried out with the cell of which temperature was ac-
tively stabilized to 28̊ C . A weak coherent probe light was used to determine
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Figure 4.5: EIT window for a coherent light of 360kHz (FWHM).

the frequency width of the EIT window. We injected a light in a coherent
state into the OPO cavity by using a flipper without a second-harmonic light
from a Doubler, and used the output as the probe beam. The procedure
described above enabled us to employ a coherent probe beam whose spatial
mode was identical to that of the squeezed vacuum. The probe beam (6.1
µW) from the OPO cavity and the control light (7.5 mW) were combined
using a polarizing beam splitter and then incident on the gas cell. The radii
of the probe beam and the control light were 0.87 mm and 2.3 mm, respec-
tively. After passing through the cell, the probe beam was separated from
the control light by the other polarizing beam splitter and its intensity was
measured using a photodetector (not shown in Fig. 4.3). Fig. 4.5 represents
a typical transmission spectrum for the probe beam obtained by scanning
the frequency of the control light. A transmission of 81% was obtained at
two-photon resonance, whereas it decreased to 26% when the frequency of
the control light was detuned from resonance. The observed width of the
EIT window was 360 kHz (FWHM).

We performed the experiment on observation of squeezed vacuum passed
through the sub-MHz EIT window. To improve the S/N ratio, the signal
from the spectrum analyzer was averaged by 500 times. We set the spectrum
analyzer in zero span mode at 1 MHz, resolution bandwidth of 300 kHz
and video bandwidth of 300 Hz and averaged the data. The signal from the
spectrum analyzer was devided into two, one of which was used for averaging
the data and the other was used for triggering the spectrum analyzer after
passing through a low pass filter of 1 Hz. The above procedure enables us to
gather the noise data of which the relative phases at the origins were fixed.
When the control light is on resonant, i.e., the control field and the probe field
satisfied the two photon resonant condition, −0.291 dB squeezing and 2.81
dB antisqueezing was observed (Fig. 4.6(a)). When we detuned the control
light by 800 kHz, the squeezing and antisqueezing levels changed to −0.14
dB and 1.36 dB, respectively(Fig. 4.6(b)). This degradings of squeezing
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Figure 4.6: The measured quadrature noise. (a) two-photon resonance. (b)
800kHz-detuning from the two-photon resonance.

and antisqueezing levels are caused by the absorption of the center frequency
components(Fig.4.7).

4.4 Experiment on Ultraslow Propagation of

Squeezed Vacuum

The experiment on ultraslow propagation of a squeezed vacuum was carried
out with a bichromatic homodyne method. The experimental setup is shown
Fig. 4.8, which is almost same as that in the previous section. To obtain the
steeper dispersion than that in the previous section, the temperature of the
cell was increased to 32 C̊ and the intensity of the control light was decreased
to 1.5 mW. The red curve in Fig. 4.9(a) shows the transmission spectrum
for the probe beam obtained by scanning the frequency of the control light.
A transmission of 52% was obtained at two-photon resonance, whereas it
decreased to 15% when the frequency of the control light was detuned from
resonance. The observed width of the EIT window was 130 kHz. When the
control light was blocked, the transmission increased to 86% as is shown by
a blue line in Fig. 4.9(a). It might be expected that the probe transmission
would decrease when the control light is blocked since the EIT is lost. The
reason that the probe transmission increased is that the hyperfine pumping
from F=2 to F=1 ceased as a result of the control light being blocked; this
decreased the atomic density corresponding to the probe transition.

A probe pulse having a temporal width of 12 µs was created from the
continuous-wave probe beam by using AOM5 in Fig. 4.8. To achieve this
we used the 0th-order (non-diffracted) light as the probe light, rather than
the 1st-order diffracted light. In the later experiment, we utilized a squeezed
vacuum as the probe, which is sensitive to the optical loss. The diffraction
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Figure 4.7: Schematic image of the observation of the squeezed vacuum after
the sub-MHz EIT window. The balanced homodyne method was used to
observe the frequency components of the squeezed vacuum which has passed
through the EIT window, which are indicated by the orange lines. The gray
lines show the vacuum noise contribution associated with the absorption.
(a) The control light and the probe light satisfies the two-photon resonance
condition. (b) The control light is slightly detuned from the two-photon
resonance.
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gation of a squeezed vacuum pulse.
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Figure 4.9: (a) Dependence of transmission of the coherent probe light on
two-photon detuning without the control light (blue line), and with the con-
trol light (red curve). (b) Temporal waveform of the coherent probe pulse,
detuned far from the atomic resonance without the control light (black line),
resonant without the control light (blue line), and resonant with the control
light (red line).

efficiency of the AOM was approximately 75%, and thus using the 1st-order
beam would cause significant optical loss; therefore, we used the 0th-order
beam for both the classical and the quantum experiments. The black curve
in Fig. 4.9(b) is the temporal waveform of the probe pulse which is detuned
far from the atomic resonance in the absence of the control light. Due to the
limited diffraction efficiency of AOM5, the tail of the pulse did not approach
zero. The blue curve in Fig. 4.9(b) shows the experimental result obtained
when the resonant probe light was incident on the cell in the absence of
the control light. As discussed above, the atomic density corresponding to
the probe transition was reduced due to the absence of the control light
and consequently no delay in the pulse was observed when the probe light
was on resonance. These results demonstrate that the probe signal under
the resonant condition in the absence of the control light can be used as a
reference to measure the delay of the pulse. The red curve in Fig. 4.9(b)
shows the experimental result when the probe light pulse was injected into
the cell with the control light; in this case, a probe pulse delay of 820 ns was
observed.

To perform ultraslow propagation of squeezed vacuum pulses, we pumped
the OPO by the blue beam from the Doubler and squeezed vacuum pulses
was generated with AOM5. Figure 4.12 shows the quadrature noises of the
squeezed vacuum pulses and the vacuum noise level. The signal is an average
of 30000 measurements and both the resolution and video bandwidths of the
spectrum analyzer were set to 100 kHz. To suppress the quadrature noise
below the shot noise level, the relative phase between the squeezed vacuum
pulses and the LO has to be locked to θ=0, where the observed noise S(θ)
takes a minimum value. The phase of the 0th-order beam from an AOM
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Figure 4.10: Measured temporal phase variation of the probe pulse caused
by AOM5. Circles show the phase shift evaluated by the beating with the
local oscillator. Black line is a fitting line by Gaussian function.

is dependent on the diffraction efficiency of the AOM1. Phase variation of
the probe pulse was measured to be Gaussian through observation of the
beating between a weak probe pulse in a coherent state and the local oscillator
(Fig. 4.10). The maximal phase shift (0.25π) was occurred at the maximal
intensity of the pulse. Therefore we were not able to generate a squeezed
vacuum pulse having a constant phase.

Instead, we controlled the phase of the local oscillator such that the rel-
ative phase θ approached zero when the pulse intensity was a maximum by
the following procedure (Fig. 4.11). First, the quadrature noise of the con-
tinuous wave squeezed vacuum was measured using a spectrum analyzer and
its output was used as the error signal to stabilize the relative phase θ us-
ing the PZT (Step 1). Here the offset locking technique was utilized and θ
was stabilized around a value of 0.2π. Next, the squeezed vacuum was cut
off using AOM5 while the voltage applied to the PZT was maintained at a
constant level. During this time, an appropriate amount of the phase shift
was quickly provided to the local oscillator by changing the phase of the RF
signal driving the AOM2 (Step 2). Finally, the squeezed vacuum pulses were
injected into the rubidium cell, where the relative phase θ approached zero
when the pulse intensity was a maximum (Step 3).

The blue curve in Fig. 4.12 shows the quadrature noise of the squeezed
vacuum pulse passing though the cell in the absence of the control light.
While the center part of the pulse shows squeezing, its tail exhibits anti-
squeezing, which is due to the limited diffraction efficiency of the AOM5 and
the non-uniform phase of the squeezed vacuum pulse.

We injected the squeezed vacuum pulse with the control light into the cell
(red curve in Fig. 4.12). The probe pulse experienced frequency dependent
loss as is shown in the red curve in Fig. 4.9(a), i.e., the carrier frequency com-
ponent âω0 experienced ultraslow propagation because of the steep dispersion

1In this experiment, we applied the excess voltage to the voltage controlled attenuator
of the AOM driver, which caused the phase variation.
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Figure 4.11: Schematic diagram for the phase shift procedure. θ is the rel-
ative phase between the squeezed vacuum and the local oscillator. Black
arrows point the observed noise of the squeezed vacuum. Red circles indicate
the relative phase point at every step. Transparent red circle indicates the
relative phase point at the previous step.

induced by EIT. Eventually, the time when maximum degree of squeezing
appeared was shifted due to the presence of the control light.

Figure 4.12(b) shows numerical simulations based on parameters obtained
from the experiment. The squeezing parameter, the loss in the OPO cavity,
the delay time of the carrier frequency component, and the transmission
of EIT medium are evaluated from Fig. 4.4 and Fig. 4.9(b). Measured
temporal phase variation of the probe pulse (Fig. 4.10) was also included
in the simulation. The experimentally obtained delay time of the squeezed
vacuum pulse (1.3 µs) is about twice of that obtained by the simulation
(640 ns). While temporal fluctuation of the control light intensity might
have caused slight difference, we do not have a clear explanation about this
discrepancy.The experimentally observed squeezing level is lower than that
of the simulation. We believe that this is because the locking point of the
relative phase varied due to temporal fluctuations in the squeezing level.

4.5 Discussions

4.5.1 Evaluation of the delay time

We evaluated the delay time by two methods: theoretical fitting and the
correlation function between the experimental data with and without the
control light.

Theoretical fitting

To obtain a theoretical formula to fit the experimental data shown in Fig.
4.12, the input state is assumed to be a thermal squeezed vacuum state, which
is a mixed state after a pure squeezed vacuum state is degraded due to optical
loss. In the fitting process, the following parameters were experimentally
obtained values from Fig.4.10 and Fig.4.9(b).
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Figure 4.12: (a) Time dependence of the measured noise of the probe pulse.
Each experimental data point is an average of 30000 measurements without
the control light, reference pulse (blue tracing), with the control light (red
tracing), and the shot noise (black tracing). (b) Numerical simulation based
on the experimental conditions. Reference pulse (blue line) and delayed pulse
(red line).

• temporal width of the phase variation of the squeezed vacuum pulse

• temporal width of the squeezed vacuum pulse

The fitting parameters are delay time, squeezing parameter, optical loss, and
amount of relative phase. Figure 4.13 shows the fitting lines with experi-
mental data. The delay time is evaluated as 1.29 ± 0.28 µs from the fitting
parameters.

Correlation function between the initial and the delayed pulse

The correlation function between the experimental data of with and without
control light is given by

C(τ) =
1

N

∑N
i f(ti)g(ti + τ)∑N

i f(ti)
∑N

j g(tj + τ)
, (4.20)

where f(ti) and g(ti) are the experimental data of with and without control
light, respectively. The correlation function is shown in Fig.4.14. From the
time that maximal correlation occurs, the delay time is evaluated as 1.0 µs.

The above two results are strong evidence suggesting ultraslow propaga-
tion of a squeezed vacuum2.

2The difference between the delay time is from that of the definition of the delay [65].
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Figure 4.13: Figure 4.12 with its fitting lines. The broken line is the fittings
lines of the measured noise of the probe pulse with the control light. The
dotted line is that without the control light.

4.5.2 Time Dependent Absorption

Because of the imperfect condition of EIT, part of the squeezed vacuum pulse
was absorbed in the experiment. If the squeezed vacuum pulse experiences
time dependent absorption, artificial ultraslow propagation can be observed.
There are two possibilities for such a time dependent loss.

We employed the 10 µs Gaussian pulse, therefore we gradually turn on
and off the probe light. However if we suddenly turn on the probe pulse,
the head of the pulse is absorbed and consumed for constructing the dark
state.for constracting the dark state (nonadiabatic limit). Such an adiabatic
condition is given by

Ωc ≫
1

T
(4.21)

where Ωc and T is Rabi frequency of the control light and the chracteristic
time of the probe pulse [81]. From the intensity of the employed control light,
Ωc ≃ 7 MHz, which is larger than the 1/T ≃ 100kHz.

The other possibility of the time dependent loss is the residual magnetic
field. The magnetic field rotates the atomic spins and destroys the dark state.
However the measured residual magnetic field inside the shield was less than
10 µG. The Larmor frequency by this field is less than 14 Hz (See Appendix).
The time scale is quite different from that of the probe pulses.

We conclude that the artificial delay does not occcur, therefore the ob-
served delay is caused by only the steep dispersion of EIT medium.

4.6 Conclusion

In conclusion, we have successfully observed ultraslow propagation of a squeezed
vacuum pulse using EIT. We employed a bichromatic local oscillator to ob-
serve the quadrature noise of a squeezed vacuum pulse. A delay time of 1.3
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Figure 4.14: Correlation function between the time dependent noise of the
probe pulse with and without the control light. The maximum correlation
appears at t

µs was measured, which implies that the squeezed vacuum pulse propagated
through the EIT medium with a group velocity of c/5000 (where c is the
velocity of light in a vacuum). The obtained fractional delay was only 11%
because of the relatively short atomic coherence time due to atomic diffu-
sion. It should be possible to increase the fractional delay and also reduce
the absorption loss by using a cold atomic ensemble.
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Conclusion and Future
Prospects

Electromagnetically induced transparency with a squeezed vacuum was in-
vestigated.

We confirmed that electromagnetically induced transparency worked for
a squeezed vacuum, which is one of the nonclassical lights (Chapter 3). This
was first demonstration of EIT with nonclassical lights. The experiment
employed the squeezed vacuum generated by waveguides of periodically poled
lithium niobate. The method with waveguides was simple, however we could
not obtain higher than 1.5 dB-squeezing. The squeezing level is limited by
the optical loss due to the waveguide structure, therfore it is difficult to
obtain the higher squeezing level with waveguides.

For further investigation of coherent interaction between nonclassical lights
and rubidium gas, a high level squeezed vacuum was generated with period-
ically poled KTiOPO4 crystals in cavities (Chapter 2). The observed maxi-
mum squeezing of 2.75 dB in 795 nm was the world record at that time3. As
discussed in Discussions in Chapter 2, the squeezing level was limited by the
instability of the cavity. Such instability causes the relative phase fluctuation
and degrades the squeezing. We expanded the beam spot size to 60 µm, re-
constructed the stable cavities and obtained more than 3 dB-squeezing. Now
we beleive that the squeezing level is limited by the unknown loss (∼5 % ) in
the OPO cavity. Pursueing of the cause of this unknow loss is inevitable to
increase the squeezing level. If the unknown loss can be reduced to 1.0 (0.5)
%, the squeezing level will increase to 5.85 (6.75) dB.

In Chapter 4, we introduced a new homodyne method (bichromatic ho-
modyne method) for observation of a squeezed vacuum which has passed
through the sub-MHz EIT window. This technique enables us to observe
such a squeezed vacuum and its ultraslow propagation. As we discussed, the
narrow band squeezed vacuum is important for the experiments on ultra-
slow propagation or storage of squeezed vacuum. Although the bichromatic
homodyne method is one of the simplest solution, the observed squeezing
level is limited to 3 dB when EIT medium is optically enough dense and its
EIT window is enough narrow. The other methods to observe the narrow
band squeezed vacuum are known. Although the other methods seem to be
experimentally difficult to implement, they are all well worth doing.

Although the storage of a squeezed vacuum has come within reach, we

3The world record is 5 dB with the same crystals as of end-January, 2007 [82].
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have not demonstrated it yet with an atomic gas sample. The hot gas has a
relatively large decay rate of the ground state coherence (∼ 10kHz) because
of atomic diffusion. This diffusion can be suppressed by using a laser-cooled
atomic gas. Although using the laser cooled gas will increase the amount
of optics, I believe that storage of a squeezed vacuum will be demonstrated
with laser-cooled atomic gas soon4.

I hope that the experiment in this thesis is a large step forward in the
quest for demonstration of genuine quantum memory.

4Some experimental progress on this point is shown in Appendix. A.
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Appendix A

Electromagnetically Induced
Transparency with a
laser-cooled atomic system

As we discussed in Conclusions and Future Prospects, atomic diffusion de-
graded the EIT condtion in the experiments. Such an atomic diffusion can
be supressed by using a laser cooling technique.

The experimental setup for EIT experiments with laser cooled atoms is
shown schematically in Fig. A.1. A Ti:sapphire laser (Ti:S laser 1) was
tuned to the D1 line (52S1/2, F=1 → 52P1/2, F’=2) which corresponds to
a probe transition. The beam from the other Ti:sapphire laser (Ti:S laser
2) was diffracted by an acousto-optical modulator (AOM) 1 and was used
for the control field. The frequency of the control light was stabilized using
a feed-forward method and it was able to be scanned around the F=2 →
F’=2 transition by tuning the frequency of a synthesizer. We employed a
laser cooled atomic ensemble of 87Rb as an EIT medium. One cycle of our
experiment comprised of a cold atom preparation period and a measurement
period. The preparation period and the measurement period had duration
of 8.7 ms and 1.3 ms, respectively. After 5.5 ms of the magneto-optical
trapping stage in the preparation period, only the magnetic field was turned
off. After the eddy current ceased (∼ 3 ms), both the cooling and repumping
lights were turned off and a pump light, which was tuned to F=2 → F’=2
transition, was incident on the gas for 100 µs to prepare the cold atoms in
F=1 state.

A weak coherent probe light was used to observe the frequency width of
the EIT window. The probe light (<1 pW) and the control light (100 µW)
were incident on the gas with a crossing angle of 2.5◦. The radii of the probe
and the control lights were 150 µm and 550 µm, respectively. Both the probe
and the control lights were circularly polarized in the same direction. During
the measurement period, the probe light was incident on the atomic gas and
its transmitted intensity was monitored using an abalanche photodiode (not
shown in Fig. A.1). Figure A.2 represents a typical transmission spectrum
for the probe light obtained by scanning the frequency of the control light,
where the medium was almost transparent around two-photon resonance.
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Figure A.1: Schematic diagram of the experiment setup. BS, beam splitter;
PBS, polarizing beam splitter; AOM, acousto-optic modulator; PD, pho-
todetector; SA, spectrum analyzer; Amp., RF amplifier. AOM5 consists of
two AOMs to cancel the frequency shift due to the diffraction. AOM6 also
consists of two AOMs, where not the 1st-order but the 0th-order beam was
utilized.

In order to carry out the EIT experiment with a squeezed vacuum, the
relative phase between the local oscillator light and the squeezed vacuum
has to be stabilized during the measurement period. For this purpose, the
relative phase was actively stabilized duirng the preparation period with a
help of a weak coherent light incident on the OPO [76]. After the preparation
period, the feedback voltage driving a PZT was held and the weak coherent
light was turned off with AOM5. Eventually, the relative phase between the
LO and the squeezed vacuum was kept during the measurement period [83].

The quadrature noises of the squeezed vacuum which passed through
the cold atoms with the control light (100µW) were monitored by using the
bichromatic homodyne method. Figure 2 (b) indicates the dependence of
the quadrature noise on the two-photon detuning, where the circles (squares)
were obtained when the relative phase was set to θ+ + θ− = 0 (π/2). Each
data was averaged over ∼100,000 times and both the resolution and video
bandwidths of the spectrum analyzer were set to 100 kHz. When the rel-
ative phase was set to θ+ + θ− = 0, the squeezing level of 0.44 ± 0.09 dB
was detected at the two photon resonance and the squeezing level decreased
with increasing the detuning, which reflects a property of the transparency
window. Around 300 kHz of detuning, the quadrature noise exceeded the
shot noise level, which was because the EIT medium provided the additional
phase to the probe light and changed the relative phase θ. Another peaks
appeared around ±2 MHz, which was concerned with two-mode quadrature
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Figure A.2: Dependence of transmission of the coherent probe light on two
photon detuning with the control light.

noise X̂2(2δ) (δ = 1 MHz). When the control light was detuned by ± 2
MHz, the frequency component corresponding to ν0±2 MHz passed through
the EIT medium, whereas that at ν0 ∓ 2 MHz was absorbed, where ν0 is the
center frequency of squeezed vacuum. Therefore the quantum correlation be-
tween the two frequency modes was lost and the thermal noise corresponding
to one frequency component was simply observed by the homodyne detector.
Note that the noise levels were identical for both θ+ + θ− = 0 and π/2.

-1

0

1

2

3

4

-4 -3 -2 -1 0 1 2 3 4

N
o

rm
al

iz
ed

 N
o
is

e 
L

ev
el

 (
d

B
)

Two Photon Detuning (MHz)

Figure A.3: Circles (Squares) indicate the quadrature noises when the rela-
tive phase between the LO and the squeezed vacuum was set to θ+ +θ−a = 0
(π/2).

To perform ultraslow propagation of a squeezed vacuum pulse, we created
a probe pulse having a temporal width of 10 µs from the continuous-wave
squeezed vacuum by using two AOMs in series (AOM6 in Fig. 1). We used
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the 0th-order (non-diffracted) light as the probe light, rather than the 1st-
order diffracted light. The diffraction efficiency of the every AOM was 80%,
and thus using the 1st-order beam would cause significant optical loss; there-
fore, we used the 0th-order beam for the experiments. Figure A.4(a)((b))
shows the quadrature noise of the squeezed vacuum pulses with the relative
phase θ+ + θ− = π/2 (0). The signal was averaged over ∼100,000 measure-
ments. Traces (A) and (B) in Fig. A.4 show the quadrature noises of the
squeezed vacuum pulses without and with the laser cooled gas in the absence
of the control light, respectively. The optically dense medium absorbed the
squeezed vacuum pulse and thus traces (B) are almost overlapped with the
shot noises (traces (C)). When the control lights were incident on the cold
atoms, the transmitted squeezed vacuum pulse were delayed. The delay time
increased as the intensity of the control light decreased (see (D), (E), and
(F) in Fig.4), which is a clear feature of slow propagation caused by EIT.
The maximal delay of 3.1 ± 0.11 µs was observed for the squeezed vacuum
pulse with 50 µW of the control light ((F) in Fig. A.4(b)).
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Figure A.4: Time dependence of the measured noise of the probe pulse with
the relative phase (a)θ+ + θ− = π/2 and (b) θ+ + θ− = 0. Traces (A)
show the quadrature noises of the squeezed vacuum pulses in the absence
of the control lights and the cold atoms. Traces (B) show the quadrature
noises of the squeezed vacuum pulses incident on the cold atoms without the
control light. Traces (C) indecate the shot noises. (D), (E), and (F) show the
quadrature noises of the squeezed vacuum pulses incidnet on the cold atoms
with the control lights whose intensity were 200, 100, 50 µW, respectively.

The maximum delay of 3.1 µs for 10 µs pulses is enough for performing
storage of a squeezed vacuum pulse [48, 51, 52]. We are currently trying
to store and retreive the squeezed vacuum with electromagnetically induced
transparency.
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Appendix B

Electric Circiut

B.1 Cut-off Frequency of Fast Photodetector

with OP Amp

In order to increase the bandwidth of a photodetector, OP amps are widely
used. The electric circuit of a fast photodetector is shown in Fig. B.1. Here
Rf and Cf are the feedback resistor and capacitor, respectively. Av represents
open-loop gain for the OP amp.

In this section, we derive the cut-off frequency of the detector. The pho-
todiode can be modeled by a current source with a capacitor. An equivalent
circuit of the Fig.B.1 is shown in Fig. B.2. The detector can be seem to
be equivalent to Fig. B.2. Ip and Cp represent the output current and the
capacitor of the photodiode, respectively.

The output voltage V0 is written as

V0 = −AvV−, (B.1)

where V− represents the input voltage of the reverse input of the OP amp.
From Kirrhioff’s law, we obtain

Ip = sCpV− + (V− − V0)

(
1

Rf

+ sCf

)
. (B.2)

Figure B.1: Typical circuit of a fast photodetector.
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Figure B.2: Model of a fast photodetector.

V− in (B.2) can be eliminated with (B.1).

Ip = −V0

[
sCp

Av

+

(
1 +

1

Av

)(
1

Rf

+ sCf

)]
(B.3)

The characteristic property of the trans-impedance amp is thus given by

V0

Ip

= −
[
sCp

Av

+

(
1 +

1

Av

)(
1

Rf

+ sCf

)]−1

= − Av

1 + Av

Rf
1

1 + s
(
Cf + Cp

1+Av

)
Rf

(B.4)

The open loop gain of the OP amp is assumed to be

Av =
1

1 + sT
A0, (B.5)

where T and A0 are the corner time constant and GB product, respectively.
Substitution of (B.5) into (B.4) generates

V0

Ip

= − A0Rf

1 + A0

1

1 + s
(
CfRf + T+CpRf

1+A0

)
+ s2

(
T (Cf+Cp)

1+A0
Rf

) . (B.6)

The trans-impedance is thus the second order low pass filter type and there-
fore there is a resonant frequency around the cut off frequency. The resonant
freqnecy is given by

ωr =

√
1 + A0

T (Cf + Cp)Rf

(B.7)

With the resonant frequency, Q value is given by

Q =
1

ωr

(
CfRf + T+CpRf

1+A0

) (B.8)

The cutoff frequency ωc should be less than the resonant frequency.

ωc <

√
1 + A0

T (Cf + Cp)Rf

(B.9)

To obtain the flat depnendence on the frequecy, the Q value should be around
0.7.
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B.2 Homodyne Detector

5124k Output32 64
7 AD829104GND GND

S3590
S3590

GND10p104+15V

-15V
Figure B.3: Homodyne detector.

B.3 Photodetector for FM Sideband Lock+15V 2p
GND32 6AD8291n 100GND

32 6OP27
32 6AD829GND100 2.2k1n 150 1kGND 1k RF OUTDC OUT

5151S3883 100k
Figure B.4: Photodetector for the FM sideband lock method, by which the
length of the cavities were locked on resonance. This detector was also used
to lock the Ti:sapphire laser to the atomic transition.
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Appendix C

Rubidium 87 data

Figure C.1: Vapor pressure and atomic density of 87Rb. The melting point
is 39.31̊ C
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Figure C.2: 87Rb D1 transition hyperfine structure, with frequency splittings
between the hyperfine energy levels. The excited-state values are taken from
[84], and the ground-state values are from [85]. The approximate Landé gF-
factor for each level is also given, with the corresponding Zeeman splittings
beween adjacent magnetic sublevels.
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Figure C.3: Transition strengths for π transitions (87Rb D1).
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