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Two dimensional 
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N sites x N sites = N2 qubits

What do we need to create a quantum computer?

Doppler cooling of atoms in a two-dimensional
optical lattice. Three basic categories of potential
shapes.
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Increasing
detuning

Increasing detuning lattice with Yb can be created
using a lattice wavelength near resonant to the
excited 1P1  → (6s7s)1S0  transition.
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Cooling

If the cooling light is ON,
the population in the 1P1
state is nearly 0.5, and the
atom experiences a strong
potential.

If the cooling light is OFF,
the atom experiences a weak
potential. This potential is ideal
for evaporated cooling and 
creating Mott insulators.

Computer simulation

0 20 40 60 80 100
0

2000

4000

6000

8000

0 20 40 60 80
0

20

40

60

80

100

Experimental setup for creating the 2D optical lattice
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Figure 2. (False color) Typical fluorescense raw images of the atoms trapped in the
optical lattice. a) b) One-dimensional optical lattice in the horizontal and vertical
(x and y) directions. c) Fluorescense in the case of a filled lattice and d) sparse filled
two-dimensional optical lattices.
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Figure 3. Intensity profile through the center axis of the image generated by
three consecutive sites. The airy function fitting shows a resolution of 390 nm.
The expected resolution for our microscope system with a NA of 0.8 is 270 nm.

Figure 4. Fluorescense intensity histogram of atoms trapped in the
two-dimensional optical lattice measured over 1620 sites. Black:
empty lattice (background) histogram and orange: center portion
of a filled lattice histogram.

Figure 5. Variation in total fluorescense when changing the cooling
light irradiation time. Curve is fitted considering the number of atoms
decay exponentially. The resultant lifetime was 10 μs.
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Figure 1. Simulation of an atom trapped in a two-dimensional optical lattice with an incident cooling light. 
Left: Deviation of the atom in each direction Δi relative to the lattice spacing ai. Middle: Number of spontaneous
emissions due to the incident cooling light. Right: Percentage of atoms that remain trapped after 100μs for different
lattice potential depths. s0 is the saturation intensity of the cooling light.

Red detuning
becomes blue detuning
and heating occurs

Ideal, but deep
potential is difficult
to realize

Possible, but
ground state
potential is
not deep enough

Potential in the
excited 1P1 state
is 300 times deeper
than the ground state
potential
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