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Abstract

In this thesis I report a microscope system for fluorescence imaging of ultra-cold ytterbium

atoms trapped in a two-dimensional optical lattice with single-site resolution.

Having a rich variety of isotopes, ytterbium atoms trapped in two-dimensional optical lat-

tices are a promising tool to study many-body quantum phenomena resulting from strongly

interacting systems. In particular, quantum simulators using fermionic atoms are useful for

studying the Fermi-Hubbard model, which is expected to be the key to elucidate the mecha-

nism of high temperature superconductors.

In order to observe atoms trapped in an optical lattice, a large number of photons is re-

quired to obtain a well resolved image. In contrast with to the conventional method of laser-

cooling the atoms while observing their fluorescence, in this experiment a deep potential was

created using a combination of a shallow ground-state and a deep excited-state potentials,

which confines the heated atoms during the imaging process. The resulting quantum gas mi-

croscope was able to resolve individual lattice sites in an optical lattice with a 544 nm spacing.
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And I’m not happy with all the analyses

that go with just the classical theory,

because nature isn’t classical, dammit,

and if you want to make a simulation of nature,

you’d better make it quantum mechanical,

and by golly it’s a wonderful problem,

because it doesn’t look so easy.

Richard Feynman
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Chapter 1

Introduction

1.1 Historical background of laser cooling

Laser cooling was proposed independently by Hänsch and Schawlow [1] and Wineland and

Dehmelt [2] in 1975 and first realized experimentally in 1978 using magnesium ions [3]. The

laser cooling techniques were soon extended to neutral atoms in 1981, when an atomic beam

of sodium atoms was slowed down to 1.5 K using a resonant laser beam. This was later im-

proved in 1982, when the Zeeman slower technique was successfully used to reduce the tem-

perature of a sodium atomic beam to less than a few tens of mK [4, 5].

One of the most important applications of laser cooling at that time was the possibility of

increasing the accuracy of spectroscopy experiments and atomic clocks, which were mainly

limited by Doppler effects and time-dilatation shifts [6]. The current definition of a second is

the duration of 9192631770 cycles of radiation corresponding to the transition between the

two hyperfine levels of the ground state of the cesium-133 atom. Since the realization of laser

cooling, the uncertainty of these cesium atomic clocks improved ∼100 times to reach a value

of nearly ∼3× 10−16. That is, the clock will not gain nor lose a second in more than 100 mil-

lion years. As big as this number may seem, a new emerging technology called “optical lattice

clocks” [7, 8] further improved this number by two orders of magnitude [9, 10] by exploiting

optical transitions of ultra-cold neutral atoms, which have frequencies five order of magni-

tude larger than hyperfine transitions. Today, laser cooling continues to be a fundamental

tool for maintaining frequency standards which support our daily lives through global posi-

tioning systems (GPS).

In recent years, laser cooling has also become a state-of-the-art tool to investigate many-

body physics in the condensed matter field. When atoms are laser cooled to very low temper-

atures, their spatial extent of the wave packet, which is determined by the thermal de Broglie

lengthλd B =
r

2πħh 2

mkB T , increases. When the inter-atomic distance is comparable with the ther-

mal de Broglie length, the wave packets of each atom start to overlap and quantum effects

5



CHAPTER 1. INTRODUCTION 6

become important. In the case of bosonic particles, the atomic cloud undergoes a quantum-

mechanical phase transition and form a Bose-Einstein condensate (BEC) at n0λ
3
d B ≈ 2.6,

where n0 is the peak atomic number density.

The history of BEC reaches back to 1924, when Satyendra Nath Bose and Albert Einstein

predicted the existence of a new state of matter [11, 12]. In 1937, Kaptisa, Allen and Misener

reduced the temperature of 4He and observed that the liquid helium flowed with no viscosity

at temperatures below 2.17K [13, 14]. One year later, theoretical work by Fritz London showed

that the zero viscosity phonema observed in liquid helium was evidence of a new superfluid

state of matter, which is intimately related to the BEC of the bosonic 4He [15]. The existence

and the size of the BEC fraction in superfluid remained controversial for many years, mainly

hindered by presence of strong interactions between the atoms in the liquid. In 1968, a∼10%

condensate fraction was observed using neutron scattering techniques [16, 17, 18].

With the aid of laser cooling and evaporative cooling [19] techniques, the first realiza-

tion of a “pure” BEC in sodium and rubidium was reported by Nobel prize winners Wieman,

Cornell and Ketterle [20, 21] in 1995. In contrast with the BEC of helium where the atoms

in the liquid are strongly interacting, the condensates formed with ultra-cold gases allowed

researchers to study the properties of weakly interacting systems. In the last 20 years the re-

search on BEC has grown explosively, resulting in the observation of many fascinating physics

such as condensate interference [22], Anderson localization [23, 24], vortex lattices [25, 26],

Berezinskii-Kosterlitz-Thouless transition [27], Feschbach resonances [28, 29], Efimov quan-

tum states [30] and the BCS-BEC crossover [31, 32, 33, 34, 35, 36, 37].

1.2 Quantum simulation and high temperature superconductors

Realization of everyday practical applications is one of the major tasks for laser cooled con-

densed matter. Ultra-cold atoms trapped in periodical potentials created by light interfer-

ence (i.e. optical lattices) demonstrated to be a novel tool for studying interacting many-body

quantum systems and creating quantum simulators [38, 39], which serve as a tool to under-

stand the physics of solids. Fermionic atoms trapped in optical lattices, in particular, are opti-

mal for simulating the Fermi-Hubbard model, which is believed to be the key to elucidate the

mechanism of cuprates high temperature superconductors [40, 41, 42, 43, 44]. Understanding

such mechanism could lead to the discovery of room-temperature superconductors, produc-

ing a huge impact in our daily lives through the improvement on generation and distribution

of electric power, transportation (magnetic levitation), medicine (MRI) and the production of

faster and more efficient microprocessors.

Why do we need quantum simulators to study cuprate superconductors? Thirty years

have passed since Nobel prize winners Bednorz and Muller first discovered cuprate high tem-



CHAPTER 1. INTRODUCTION 7

perature superconductors in 1986, but the mechanism responsible of generating these ma-

terial is still not completely understood. Solid-state physics phenomena resulting in cuprate

superconductors is characterized by the movement of electrons inside a crystalline structure.

As the electrons are strongly correlated to each other due to the Coulomb interaction between

them, a complete understanding of a single electron state requires the knowledge of the state

of all the remaining electrons. In order to simulate strongly correlated quantum system like

this using a classical computer, the required number of bits would scale exponentially with

the size of the system. Quantum Monte Carlo (QMC) methods, which are effective for solv-

ing the Bose-Hubbard Model, notoriously suffer from the so-called “minus sign problem” [45]

when solving the Fermi-Hubbard Model. Using ultra-cold neutral atoms trapped in optical

lattice can circumvent this problem, as the quantum simulation of the Fermi-Hubbard model

can be realized in an experimental way.

In recent years, Markus Greiner team in Harvard University successfully implemented a

quantum gas microscope with a resolution of 600 nm capable to address single atoms trapped

in a two-dimensional optical lattice [46]. By using a system comprised by a solid immersion

lens (SIL) and a high numerical aperture objective lens (NA=0.55), they successfully detected

single rubidium atoms in a two-dimensional optical lattice. Later in 2010, Immanuel Bloch

team also implemented a high resolution microscope capable of addressing individual Rb

atoms using a very high resolution objective lens (NA=0.68) [47]. Several demonstrations of a

quantum simulators were realized with the assistance of quantum gas microscopes, includ-

ing the simulation of antiferromagnetic spin chains [48], quantum walks [49], and Ising quan-

tum magnets [50]. Since the creation of these magnificent tools used to observe and manipu-

late rubidium atoms with single-site resolution, the number of researchers trying to develop

quantum gas microscopes for other species, which would allow them to simulate a wider di-

versity of systems such as strongly correlated Fermi-Hubbard systems, have increased. It was

not until 2014 that this technology was successfully extended to ytterbium atoms (this work

[51]), and in 2015, to lithium [52, 53, 54], potassium [55, 56, 57] and also ytterbium on a differ-

ent way [58].

1.3 Purpose of this thesis

The final objective of our research is to realize the quantum simulation of the Fermi-Hubbard

model. One of the biggest challenges to overcome is that the temperature required to reach

d-wave superfluidity is below the Neel temperature, which is in the order of Tn/TF ≈ 0.01,

where TF is the Fermi temperature [59]. Currently, the minimum temperature obtained with

fermionic species is in the order of T /TF ≈ 0.1, which is one order of magnitude higher than

the required temperature. Another difficulty is that temperatures below T /TF ≈ 0.1 cannot be
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measured using the time-of-flight technique [59]. One idea to reduce the temperature of the

atoms is to realize spatial filtering [60], which consists in tailor the lattice potential to create

high entropy regions than can be later removed. To measure the temperature, instead of mea-

suring the momentum distribution using the time-of-flight technique it is possible to obtain

the temperature from Quantum Monte Carlo fittings of the in-situ distributions. Both of these

techniques, however, require that atoms are resolved with single-site resolution. Although a

quantum gas microscope is capable of measuring and the optical lattice with single-site res-

olution, when I started my research the technology was only available for rubidium atoms

which have only bosonic isotopes.

The purpose of this thesis is to realize a quantum gas microscope of ytterbium atoms,

which have a fermionic isotope (173Yb). One of the advantages of Yb is that the ground state

is 1S0, and thus, there is no electronic spin in the ground state resulting in low decoher-

ence times due to magnetic-field fluctuations. Also, the absence of total angular momentum

(J = 0) results in SU(N) symmetry which prevents spin exchanging collisions. Additionally, Yb

have two metastable states with lifetime of several tens of seconds, which are useful for high-

resolution spectroscopy [61] and for cooling fermionic atoms in a optical lattice through spa-

cial filtering [60]. The 3P2 state can also be used to to tune inter-atomic interactions through

Feshbach resonances [62].

To test the performance of a quantum gas microscope it is convenient to start with the

174Yb bosonic isotope, which have simpler energy structure due to the lack of hyperfine split-

ting. The quantum gas microscope presented in this work uses the bosonic isotope, but the

same method can be applied to the fermionic isotope without major modifications of the

system, as explained in the last chapter.

1.4 Thesis overview

This thesis is organized as follows:

Chapter 2: Ytterbium

A briefly description of the properties of Yb atoms and the most important energy levels.

Chapter 3: Quantum gas microscope

This chapter centers in explaining the requirements of a quantum gas microscope and

analyzing the possible fluorescence imaging strategies applicable to Ytterbium atoms.

The “deep potential” strategy used to obtain a large number of photons during imaging

is explained in detail, together with simulations to test the feasibility of the method.

Chapter 4: Experiment: Transport of atoms to the SIL surface

To create a two-dimensional optical lattice with trapped Yb atoms, atoms are first re-
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quired to be confined in a pancake-shaped region which is thinner than the depth of

field of the objective lens. This chapter focuses in the experimental method used to

transport ultra-cold Yb atoms under the surface of the solid immersion lens. The “opti-

cal accordion” technique used to create a Bose-Einstein condensate and compress the

atoms into a thin layer is also explained in detail.

Chapter 5: Experiment: Fluorescence imaging

In this chapter, the experimental method to load the thin condensate of atoms under

the surface of the solid immersion lens into a two-dimensional optical lattice is first

explained, followed by an analysis of the fluorescence images that were obtained with

the quantum gas microscope using the “deep potential” strategy.

Chapter 6: Extension to fermionic isotopes

This chapter focuses in the requirements to extend the quantum gas microscope of yt-

terbium atoms to the 173Yb fermionic isotope.

1.5 List of publications

The most relevant parts of this thesis have been summarized in the following journal articles:

• M. Miranda, A. Nakamoto, Y. Okuyama, A. Noguchi, M. Ueda, and M. Kozuma, All-

optical transport and compression of ytterbium atoms into the surface of a solid immer-

sion lens, Physical Review A 86, 063615 (2012).

• Martin Miranda, Ryotaro Inoue, Yuki Okuyama, Akimasa Nakamoto, and Mikio Kozuma,

Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice, Physical

Review A 91, 063414 (2015).

The following journal article is also related to this thesis:

• Toshiyuki Hosoya, Martin Miranda, Ryotaro Inoue, and Mikio Kozuma, Injection locking

of a high power ultraviolet laser diode for laser cooling of ytterbium atoms, Review of

Scientific Instruments 86, 073110 (2015).



Chapter 2

Ytterbium

Ytterbium is a rare earth element and member of the lanthanoid group with atomic number

70 and chemical symbol Yb. With only two electrons in the outermost shell resulting in the

absence of electronic spin in the ground state, the Yb atom have a similar energy structure

compared with other alkaline-earth-metal-like such as Ca, Sr, and Hg.

2.1 General properties

Naturally occurring ytterbium is composed of seven stable isotopes, five of which are fermions

and two are bosons. The natural abundance and nuclear spin of each isotope is summarized

in Table 2.1. Compared to other elements, the abundance is more homogeneously distributed

between the isotopes.

Mass number Natural abundance Nuclear Spin Type

168 0.13 0 Boson

170 3.05 0 Boson

171 14.3 1/2 Fermion

172 21.9 0 Boson

173 16.12 5/2 Fermion

174 31.8 0 Boson

176 12.7 0 Boson

Table 2.1: Stable isotopes of Yb [63]

At room temperature, Yb is a solid metal with silvery color, having an atomic mass of

173.04, a density of 6.97 g/cm3, and melting point of 1097 K. Ytterbium is mostly non reac-

tive, reacting very slowly to oxygen and water. Due to the high melting point, the saturated

vapor pressure at room temperature is very low, thus requiring heating up to 700 K in order to

obtain sufficient gas for the experiments.

10
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2.2 Energy structure

Ytterbium have two valence electrons in the outermost shell resulting in a 1S0 ground state

with no electronic spin. Similar to other alkaline-earth-metal-like species the excited states

are singlet (S = 0) or triplet (S = 1) states. The energy levels up to 45000 cm−1 are summarized

in Fig. 2.1. All energy levels were represented by the term symbol 2S+1L J , where S is the total

electronic spin (2S + 1 is the multiplicity), L is the total orbital angular momentum of all the

electrons in the system (represented by the letters S , P , D for L = 0, . . . , 2), and J is the total

angular momentum of the system. The important transitions are briefly described bellow.

1S0↔ 1P1 (399 nm)

An electric dipoled (E1) allowed transition resulting in a strong linewidth of Γ/2π =

27.9 MHz. The strong radiative pressure of this transition is useful for Zeeman slowing

of the atomic beam. In this experiment, this transition was used for fluorescence imag-

ing the atoms in the two-dimensional optical lattice. Additionally, absorption imaging

of the atoms is realized using this transition. This transition is essentially cyclic, with a

very small branching ratio of roughly 10−7 to the 3D1 and 3D2 states [64].

1S0↔ 3P1 (556 nm)

This singlet to triplet transition is prohibited by the LS coupling selection laws. For

heavy atoms as Ytterbium, JJ coupling between the orbital and spin motion in the two

valence electrons results in the relaxation of the selection law, resulting in this inter-

combination transition. With a linewidth of Γ/2π= 181 kHz, this cyclic transition have

a low Doppler cooling limit and is ideal for laser cooling in the magneto optical trap.

1S0↔ 3P0 (578 nm)

In this double forbidden transition, the 3P0 state is very weakly coupled to the 1S0 ground

state with decay rates in the order of tens of millihertz. The resulting ultra-narrow tran-

sition is called clock-transition. In contrast with the 1S0 ↔ 3P2 ultra-narrow transi-

tion, the absence of electronic angular momentum in the excited state reduces the ef-

fects of magnetic fields, making this transition ideal for the creation of a new frequency

standard[65, 66]. Additionally, this transition was implemented for the study of two-

orbital SU(N) systems [67], and proposed for the implementation in quantum compu-

tation [68] and side-band cooling [69].

1S0↔ 3P2 (507 nm)

This quadruple magnetic (M2) transition is also an ultra-narrow transition with a linewidth

of a few tens of millihertz. In contrast with the 1S0↔ 3P0 clock transition, the excited

state have a large magnetic dipole moment of 3µB , which is useful to tune dipole-dipole

interactions between atoms in an optical lattice [70]. In recent experiments, the narrow
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linewidth advantage of this transition was effectively utilized to optical-spectral and

magnetic-resonant imaging of atoms trapped in optical lattices [61, 71].

1S0↔ 3D2 (404 nm)

This quadrupole dipole (E2) transition with a linewidth of Γ/2π = 350 kHz is useful to

excite atoms to the 3P2 and 3P0 states through optical pumping. Atoms excited to the

3D2 state decay into the 3P1,2 states with a ratio of 20:3. As the atoms in the 3P1 state

decay back to the ground state, after a few cycles all the atoms can be pumped into

the 3P2 state [72]. Additionally, by combining the 1S0↔ 3D2 transition with the dipole

allowed 3P2↔ 3S1 transition, it is possible realize optical pumping to the 3P0 state.

1P1↔ (6s7s)1S0 (1077 nm)

This dipole allowed transition from the excited 1P1 have a linewidth of Γ/2π= 3.0 MHz

was used in this experiment to produce a deep potential in the excited 1P1 state. Atoms

excited to the (6s 7s )1S0 state also weakly decay to the 3P1 state with a decay rate of 2π×
0.2 MHz [73].

2.3 Scattering lengths

The scattering length of each isotope was estimated in previous experiments using two-color

photoassociation spectroscopy [74]. The values for the bosonic 174Yb isotope and the fermionic

isotopes (171Yb and 173Yb) were summarized in Table 2.2.

171 173 174

171 -0.15(19) -30.6(3.2) 22.7(7)

173 10.55(11) 7.34(8)

174 5.55(8)

Table 2.2: Calculated s-wave scattering lengths in nm for the 171Yb, 173Yb and 174Yb isotopes
[74].



CHAPTER 2. YTTERBIUM 13

1077 nm
 (3.3 M

H
z)

611 nm
 (210 kH

z)

770 nm
 (5.9 M

H
z)

649 nm
 (1.5 M

H
z)

40
4 

nm
 (
35

0 
kH

z)

3
9
8
.9

 n
m

 (
2
7
.9

 M
H
z)

5
5
5
.8

 n
m

 (
1
8
1
 k

H
z)

5
7
8
 n

m
 (

7
 m

H
z)

5
0
7
 n

m
(1

1
 m

H
z)

(6s2) 1S
0

(6s6p) 3P
0
 

(6s6p) 3P
1
 

(6s6p) 3P
2

(6s6p) 1P
1

(5d6s) 3D
1

(5d6s) 3D
2

(5d6s) 3D
3

(6s7p) 3P
0

(6s7p) 3P
1

(6s7p) 3P
2

(5d6s) 1D
2

(6s7s) 3S
1

(6s7s) 1S
0

(6s6d) 3D
1

(6s6d) 3D
2

(6s6d) 3D
3

(6s6d) 1D
2

(6s8s) 3S
1

(6s8s) 1S
0

(6p2) 3P
0
 

(6p2) 3P
1
 

(6p2) 3P
2

Ionization Energy (50443.2 cm-1)

5
3
2
 n

m
 O

D
T

17288.439

17992.007

19710.388

25068.222

25270.902

38551.93

38174.17

38090.71

24751.948

24489.102

27677.665

40061.51

39966.09

39838.04

39808.72

32694.692

34350.65

41615.04

41939.90
42436.91

43805.42

44760.37

Figure 2.1: Ytterbium energy levels.
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Atomic Mass Isotope Shift (MHz) Frequency (MHz)

176 -509 751 525 478.5

173(5/2-5/2) -253 751 525 734.3

174 0 751 525 987.7

173(5/2-3/2) 516 751 526 503.7

172 533 751 526 521.1

173(5/2-7/2) 588 751 526 575.7

171(1/2-3/2) 832 751 526 820.2

171(1/2-1/2) 1154 751 527 141.5

170 1192 751 527 180.2

168 1887 751 527 875.2

Table 2.3: Isotope shifts and absolute frequencies of the 1S0→ 1P1 transition [75].

Atomic Mass Isotope Shift (MHz) Frequency (MHz)

173(5/2-7/2) -2386.7 539 384 174.1

171(1/2-1/2) -2132.0 539 384 428.8

176 -954.8 539 385 606

174 0 539 386 560.8

172 1000.0 539 387 560.8

170 2286.3 539 388 847.2

173(5/2-5/2) 2311.4 539 382 339.8

168 3655.1 539 380 996.1

171(1/2-3/2) 3804.6 539 380 846.0

173(5/2-3/2) 3805.7 539 380 843.9

Table 2.4: Isotope shifts and absolute frequencies of the 1S0→ 3P1 transition [76, 77].
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Quantum gas microscope

One site image

1 pixel = 90 nm
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Figure 3.1: Schematic of a quantum gas microscope. The fluorescence from the atoms
trapped in a two-dimensional are captured by a high-numerical-aperture microscope and
imaged with a CCD camera.

Quantum gas microscopes are high-resolution fluorescence imaging devices capable of

resolving individual atoms trapped in a two-dimensional optical lattice [47, 46]. The con-

ventional method to observe atoms trapped in an optical lattice is to excite the atoms and

observe the resulting fluorescence using a high-numerical-aperture microscope. Due to the

large number of photons required to obtain a well-resolved image, a deep lattice potential is

necessary to keep the heated atoms trapped during the imaging process. In the case of ru-

bidium atoms, the polarization- gradient-cooling technique [46, 47, 78] worked effectively

15
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to overcome this difficulty, as it could cool down the atoms to sub-Doppler temperatures

while the resultant fluorescence was observed. Unfortunately, this technique is not effective

for all the atomic species. In the case of bosonic Yb atoms, for example, the lack of hyper-

fine splitting makes impossible the application of sub-Doppler cooling mechanisms such as

polarization-gradient-cooling, Raman cooling [79, 80, 81, 56, 52], and electromagnetically in-

duced transparency cooling [82, 83, 55].

3.1 Sub-Doppler cooling methods in alkali atoms

In QGM experiments using alkali atoms such as rubidium, lithium and potassium, sub-Doppler

techniques are utilized to cool down the atoms while the resultant fluorescence is collected.

Temperatures lower than the Doppler cooling limit resulted in trap lifetimes much larger than

the exposure(irradiation) time, which is a required condition to obtain a high fidelity in the

fluorescence measurement.

3.1.1 Polarization gradient cooling

In the case of rubidium, the polarization gradient cooling technique was utilized. This tech-

nique is schematized in Fig. 3.2. First, two counter-propagating beams having linear polar-

ization, which each polarization orthogonal to each other, are used to create a polarization

gradient field.

p
u
m
p
in
g

Figure 3.2: Polarization gradient cooling. Two counter-propagating beams with linear and
orthogonal polarization create a polarization gradient field. An atom traveling trough this
field is repetitively repumped ’downhill’ resulting in Sisyphus cooling.

To understand why this field is generated, each of the beams can be written as a superpo-
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sition ofσ+ andσ− polarization beams:

E+ =
1p
2

1
1

e i (k x−ωt ) , E− =
1p
2

 i
−i

e i (−k x−ωt ). (3.1)

The interference of this two beams produces two independent standing waves for the circular

polarizationsσ+ andσ−, having a relative phase of π/2:

|E++E−|2∝
sin2(k x −π/4)

sin2(k x +π/4)

 (3.2)

Next, consider a system having states |↑〉 and |↓〉 which only couples to the σ− and σ+ polar-

ization, respectively. Suppose, as in Fig. 3.2 that the atom initially has a state |↑〉 where the

potential is minimum. As the atom moves climbing the potential wall, the intensity of theσ+

standing wave decreases while the intensity of the σ− one increases. Around the potential

maxima, the σ− light repumps the atom to the |↓〉 state. In this state, the potential is again a

minimum, and the atom will continue moving in the same direction climbing the potential

wall, until the σ− standing wave intensity decreases again and the atom is repumped back

to the |↑〉 state. As the atom repetitiously climb the potential wall, the velocity of the atom

can be reduced. This cooling mechanism was named Sisyphus cooling in honor to the king

of Ephyra in the Greek mythology, who was punished to roll a heavy ball up to a hill and to

throw it back down, repeating this process indefinitely.

The resultant temperature using this cooling method can reach much lower values than

the Doppler limit:

T ≈ ħhΩ2

8∆
(3.3)

as the temperature can be reduced by increasing the detuning∆ of the cooling beams while

decreasing their Rabi frequency (laser intensity) Ω2. Using a large detuning ∆ is also an im-

portant feature of this cooling method, as it makes it robust against the inhomogeneities of

the light shift in the space produced by the AC Stark shift of the optical lattice. Notice, how-

ever, that the trade-off for having low atom temperatures is a reduced photon emission rate,

and a lower velocity trap range.

3.1.2 Side-band cooling

Side-band cooling is a technique originally used to cool down ions tightly trapped in a har-

monic potential. Consider a two level system with ground state
��g � and an excited state |e 〉

with a transition frequencyω0. When the oscillator quantum vibrational separationω is suffi-
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ciently large, the system can be well described by the eigenstates
��g ,n
�

, |e , m〉, where n and m

represent the vibrational energy. A laser light with frequencyωL couples each of the ground

states
��g , n
�

with the excited states |e , m〉 at the transition frequencies ωL = ω0 + (m −n )ω.

When the natural linewidth of the
��g � → |e 〉 transition Γ is sufficiently smaller than ω, it is

possible to resolve each of the resonances
��g ,n
� → |e ,m〉 in the spectrum. The transition

corresponding toωL =ω0 where the vibrational energy remains the same (
��g ,n
�→ |e , n〉) is

called carrier transition, while the transitions to different vibrational energy
��g , n
�→ |e , n〉 are

denominated side-band transitions.

The side-band cooling technique consists in using a cooling beam that reduces the vi-

brational level by 1 in each excitation |e ,n〉 → ��g , n −1
�
. After the atom is excited, it sponta-

neously decay with a high probability to the same vibrational level in the ground state |e ,n −1〉→��g ,n −1
�
, completing one cycle and reducing the energy of the atom byħhω. This process is re-

peated until the atom is in the motional ground state
��g , 0
�
. The condition that the atom falls

with high probability to the same vibrational level in the ground state is satisfied by an atom

in the so called Lamb-Dicke regime, where the recoil energy of one photon ħhωR is smaller

than the quantum vibrational separation ħhω. This condition is often written as:

η=
s
ωR

ω
=

√√ ħhk 2

2mω
≪ 1 (3.4)

where η is the Lamb-Dicke parameter, k is the wavenumber of the cooling light, and m is the

mass of the atom.

In the case of 40Ca+ ions trapped in a Paul trap, the trap frequencies are often in the order

ofω/2π≈ 1 MHz, while the recoil energy of a 729 nm beam is approximatelyωR/2π≈ 10 kHz,

resulting in a Lamb-Dicke parameter of η≈ 0.1. The ultra narrow transition at 729 nm have a

linewidth of less than 1 Hz, which is enough to resolve the side-band transitions.

Summarizing the above, two conditions are necessary to realize side-band cooling: 1) A

cooling laser with a line-width much smaller than the vibrational energy (Γ ≪ω) in order to

resolve the side-bands, and 2) A system satisfying the Lamb-Dicke condition, where the recoil

energy is much smaller than the vibrational energy (ωR ≪ω).

In the case of neutral atoms trapped in two-dimensional optical lattices, the trap frequen-

cies are often in the order of ω/2π ≈ 100 kHz and both conditions become more difficult to

be satisfied. For example, the narrow intercombination transition of Ytterbium atoms have a

linewidth of Γ/2π= 180 kHz and a recoil energy ofωR/2π= 3.7 kHz, resulting in η= 0.14 and

Γ/ω = 1.8. Although the Lamb-Dicke condition is somehow satisfied, the line-width of the

cooling laser is too broad to resolve the side-band transitions.

Two different cooling methods can be used to effectively reduce the linewidth of the cool-

ing laser, namely, Raman cooling and EIT cooling. Both methods were successfully applied to
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cool neutral atoms trapped in two-dimensional optical lattice [79], and also in quantum gas

microscopes in recent experiments.
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(a) Raman cooling. Two non-resonant beams
are used to drive the

��g1, n
�→ ��g2, n −1
�

Raman
transition in a three-level atom. A repump beam
is then used to return the atom to the

��g1, n −1
�

state, completing one cycle of side-band cool-
ing.
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(b) EIT cooling. A strong coupling laser and a
weak cooling laser in aΛ-configuration produce
a Fano-like profile in the absorption spectrum
(right graph). The detuning and Rabi frequency
of each beam can be choosen in such a way that
the blue side-band excitation is suppressed, re-
sulting in side-band cooling.

Figure 3.3: Two different sub-Doppler cooling methods used to cool down alkali atoms in an
optical lattice.

The Raman cooling method consists in using a three-level system to drive a Raman tran-

sition, as shown in Fig. 3.3a. A three-level lambda system is usually used for Raman cool-

ing, where two of the energy levels (|g1〉 and |g2〉) are stable or metastable states, but a ladder

system can be also utilized. First, two non-resonant laser beams detuned by ∆ are used to

drive a Raman transition the |g1〉 → |g2〉 transition through an intermediate transition |e 〉.
The linewidth of the Raman transition is given by the formula

Γraman =
Ωg e 1Ωg e 2

∆
(3.5)

where Ωg e 1 and Ωg e 2 are the Rabi frequencies driving the |g1〉 → |e 〉 and |g2〉 → |e 〉 tran-

sitions, respectively. It is clear in this equation that the linewidth of the Raman transition

can be reduced by increasing the detuning∆, which is useful to resolve the side-band transi-

tion
��g1,n
�→ ��g2,n −1
�

necessary for side-band cooling. After the atom is transferred to the��g2, n −1
�

state, a new beam resonant to the |g2〉 → |e 〉 transition is used to optically pump

the atom back to the
��g1

�
transition. If the Lamb-Dicke condition is satisfied, the atom will be

returned
��g1,n −1
�

to the state, completing one cycle of side-band cooling.

The electromagnetically induced transparency (EIT) cooling utilizes a strong coupling

laser detuned by∆r to the |r 〉→ |e 〉 transition to tailor the absorption spectrum of a coupling
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laser detuned to the |g 〉 → |e 〉 transition (see Fig. 3.3b). The resultant absorption spectrum

when∆r > 0 is a Fano-like profile having a zero at∆s =∆r corresponding to the |g , n〉→ |e ,n〉
carrier transition. The idea to produce effective side-band cooling is to choose the coupling

laser detuning∆r and a Rabi frequency Ωr such that it satisfies the equation:

Γ =

Æ
∆r

2+ Γr 2−∆r

2
. (3.6)

In this case, the narrow peak of the Fano-like profile coincides with the red-sideband tran-

sition |g ,n〉 → |e ,n −1〉. This method thus enhances the red side-band transition while it

cancels the carrier excitation, which is an ideal condition for side-band cooling.

3.1.3 Sub-doppler cooling in Yb atoms

In the case of the bosonic isotopes of Yb, the lack of hyperfine and magnetic sub-levels in

the ground state impedes the use of sub-doppler techniques such as Polarization gradient

cooling, Raman cooling and EIT cooling. One idea for realizing sub-doppler cooling is by us-

ing two-photon transitions such as the 1S0 → 3P1 → (6s 7s )1S0 transition having linewidths

of Γ/2π = 181 kHz and Γ/2π = 210 kHz. Fermionic isotopes have a nuclear spin and conse-

quently hyperfine structure in the excited levels. Raman cooling could be possible in principle

by using different magnetic sub-levels of the ground state. Also, by using the metastable state

3P2 as a cooling basis (which have hyperfine splitting in the fermionic case) it is possible to

realize polarization gradient cooling, Raman cooling or EIT cooling.

3.2 Simulation

For the following sections, a computer simulation will be used to test the Doppler cooling and

deep potential methods. The simulation realized is semi-classical with the following proper-

ties:

Optical lattice The optical potential utilized for the simulations is given by:

V (x , y , z ) =V0 sin2(kz z )
�
sin2(kx x )+ sin2(ky y )

�
. (3.7)

where kx = ky =
2π

λlat cosθacc
and kz =

2π
λlat sinθacc

. All simulations were realized for the case

θacc = 6◦. Note that V0 is the lattice depth in the x y plane, while the depth in the z

direction is 2V0. Due to the geometry of this potential, the hoppings in the z direction

will be negligible compared with the ones in the x y plane.

Movement The mechanics of the particle is considered to be classical. For a particle with

mass m and position r(t ), the differential equation that governs the movement is given
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by:

m r̈(t ) = F (r, t ) (3.8)

where F is the force at the position r and time t . Using the Euler method, the position

of a particle is calculated by the following equations. ṙ(t +δt ) = ṙ(t )+
F (r, t )

m
δt

r(t +δt ) = r(t )+ ṙ(t )δt
(3.9)

Wannier functions are not considered for the simulation. The initial position and ve-

locity of the atom is always r(t ) = 0 and ṙ(t ) = 0, respectively.

Photons absorption and emission The probability of absorbing a photon between t and t +

δt is given by the formula:

p (t ) =
Γ

2

s0

1+ s0+4
�
∆(r)+k·ṙ(t )

Γ

�2δt (3.10)

where k · ṙ represents the Doppler effect and∆(r) is the detuning of the laser including

Stark shift effects at the position r. In the case of a magic-wavelength, the detuning is

homogeneous and ∆(r) is constant. When an atom absorbs a photon, the velocity of

the particle is immediately increased by ħhk
m . Absorption is immediately followed by a

photon emission in a random direction.

Population and Rabi oscillations For a multi-level atom, the population in each state |i 〉 is

given by ρi i (t , r). The force experienced by the atom is given by:

F (r, t ) =−∑
i

ρi i (t , r)∇Vi (r) (3.11)

where Vi (r) is the optical lattice potential on the the state |i 〉. Note that ρi i depends on

the time, as Rabi oscillations are considered instead of using time averages. For states

that are not coupled by a light beam, spontaneus emission rates resulting in transition

from a excited state |i 〉 to a state with a lower energy | j 〉 are calculated using the formula

ρi i Γi j .

Each simulation is stopped when the atom hops to a neighboring site (|ki ri (t )|> π
2 ). The

lifetime is calculated averaging the obtained photons after 500 repetitions.
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3.3 Doppler cooling in ytterbium

This section is dedicated to study the possibility of using Doppler cooling to cool down the

atoms in the QGM scheme. As the Doppler cooling strongly depends on the detuning of the

cooling laser beam ∆, it is important to consider the light shift inhomogeneities that arise

from having different AC Stark shift in the ground and excited states. The first part of this

section is dedicated to study the simplest Doppler cooling setup, where the lattice wavelength

λlat is set to the magic-wavelengthλmagic one. In this setup, the wavelength of the lattice ODT

is chosen such that the result AC Stark shift in the ground and excited states are exactly the

same for every position in space, which produces an homogenous light shift in the space and

determines a constant detuning for every point in space∆(x , y , z ) =∆(0,0,0).

3.3.1 Magic-wavelength potential and 1S0-3P1 molasses

The 1S0-3P1 cooling transition in Yb, having a low Doppler cooling limit of 4.4µK, could in

principle allow one to obtain long lifetimes even with low potential depths. Simulation results

shown in Fig. 3.4a shows the lifetime (in photons) dependency on the potential depth 2V0.

For this simulation a six beam molasses setup is used, with each beam having a saturation

intensity of s0 = 1 and a detuning of∆/Γ =−0.8.

(a) Lifetime dependency on the potential depth
2V0 for s0 = 1 and∆/Γ =−0.8.

(b) Lifetime dependency on the detuning ∆ for
different saturation intensities s0. The potential
depth is fixed at 90µK

Figure 3.4: Lifetimes obtained from the simulation for a magic-wavelength potential using
the 1S0− 3P1 transition.

Note that the vertical axis in the figure is in the logarithmic scale. By increasing the poten-

tial depth by 30µK the lifetime can be increased one order of magnitude. This is compatible

with the Doppler theory, in which atoms have a Gaussian velocity distribution.

To clarify this point, consider the velocity distribution of an atom during Doppler cooling



CHAPTER 3. QUANTUM GAS MICROSCOPE 23

Figure 3.5: Velocity distribution of an atom during Doppler cooling. The velocity unit is in
recoil units vR = ħhk/m . The solid line corresponds to a Gaussian fitting.

shown in Fig. 3.5. The profile was obtained from a simple one-dimensional simulation in the

free space, for a detuning of∆=−Γ/2 and a saturation intensity of s0 = 10−3. The temperature

obtained from the width of the Gaussian profile

f1D(v )∝ e −
m v 2

2kB T (3.12)

resulted in T = 4.5µK, which is the Doppler cooling limit. In the three-dimensional case, the

lattice depth in the z direction is 2V0 while the lattice depth in the x and y directions is V0.

Consequently, the atom will mostly escape in the x and y directions and the problem can be

considered as two-dimensional. The velocity distribution corresponding to the 2D case is:

f2D(v )∝ v e −
m v 2

2kB T (3.13)

An atom escapes the lattice site when its kinetic energy is larger than the lattice depth V0. The

probability of having an atom with the escape velocity or larger is:

p

�
v ≥
√√2V0

m

�
=

∫ ∞
v=
p

2V0/m

f2D(v )d v∝ e −
V0

kB T (3.14)

which decreases exponentially with the potential depth. The lifetime dependency on the

laser-cooling detuning ∆ and saturation s0 is shown in Fig. 3.4b, where the potential depth

was fixed to 2V0 = 90µK. For s0 = 0.1 the optimal saturation was obtained at∆/Γ =−0.6. Note

that this result also follows the standard Doppler cooling theory where the Doppler cooling
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temperature is

kB T =
ħhΓ
4

1+ s0+
�

2∆
Γ

�2
2∆
Γ

(3.15)

and the Doppler cooling limit is determined by

kB T =
ħhΓ
2

p
1+ s0 when ∆=−Γ

2

p
1+ s0. (3.16)

For higher laser cooling saturation, the temperature increases and the optimal detuning

∆ increases by a ratio of
p

1+ s0, which produces a significant reduction in the lifetime. The

photon emission rate is also an important factor in the QGC, as the lifetime of the atomic

cloud is limited by other factors such as background collisions and lattice light absorptions.

Consequently, a saturation of at least s0 = 1 is desired for the experiment. For the following

subsections, the analysis will be limited to a saturation of s0 = 1.

Six beams 3D molasses Four beams 2D molasses Four beams 3D molasses

Figure 3.6: Three different cooling schemes. (left) 3D molasses cooling using 6 beams in the
±x ,±y and ±z directions. (center) 2D molasses using 4 beams in the ±x and ±y directions.
(right) 4 beams in the Brewster angle directions allows cooling in the three dimensions.

(a) 2D molasses using 4 beams in the±x and±y
directions.

(b) 4 beams setup as shown in the Fig. 3.6(right)
setup.

Figure 3.7: Lifetime as a function of the potential depth 2V0 for s0 = 1 and∆/Γ =−0.8 for two
different molasses setup.

Another important point to consider is that in the QGM setup the objective lens is placed
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over the solid immersion lens along the z direction (Fig. 3.1). This means that the molasses

beams in the+z direction would enter directly into the camera CCD sensor. One idea to avoid

this problem is to use cooling only in the ±x and ±y directions (Fig. 3.6). Simulation results

in Fig. 3.6 shows that, in the case of a 2D cooling, the heating along the z direction causes a

significant reduction in the lifetime. In contrast to the potential depth of 2V0 = 90µK required

to obtain a lifetime of 10000 photons in the 3D molasses case, a potential 2V0 = 450µK would

be required to obtain the same lifetime for the 2D molasses approach. Moreover, in this case

the lifetime only increases linearly with the potential depth, so a further increment in the life-

time would require a very large potential. Another possible idea is to use four cooling beams

in the

k̂1 = (cosθB ,0,−sinθB )

k̂2 = (−cosθB , 0,−sinθB )

k̂3 = (0,cosθB ,+sinθB )

k̂4 = (0,cosθB , sinθB )

directions, where θB is the Brewster angle. It can be easily seen that with this setup cooling is

possible in all directions. Simulation results in Fig. 3.7b show that this setup produces equal

performance as the obtained in the six beams molasses.

3.3.2 Estimation of the magic-wavelength for the 1S0-3P1 transition

Figure 3.8: Polarizability in the ground 1S0 state and excited 3P1 state as a function of the opti-
cal dipole trap wavelength. Magic-wavelengths were found 424 nm, 463 nm, 551 nm, 612 nm,
800 nm and 1.53µm.

The magic-wavelength for the 1S0-3P1 transition is estimated using all the energy levels

up to 42000 cm−1. For the calculations, a linear polarized light was used and only the m = 0

sublevel in both the ground and excited states were considered. In the case of the ground
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From To Wavelength Linewidth Refs.

(6s6p)3P1 (5d6s)3D1 1539 nm 16 kHz [84]

(6s6p)3P1 (5d6s)3D2 1479 nm 320 kHz [84]

(6s6p)3P1 (6s7s)3S1 680.1 nm 4.3 MHz [84]

(6s6p)3P1 (6s7s)1S0 611.3 nm 210 kHz [85]

(6s6p)3P1 (6s6d)3D1 457.7 nm 2.6 MHz [86, 87]

(6s6p)3P1 (6s6d)3D2 458.3 nm 2.4 MHz [86, 87]

(6s6p)3P1 (6s8s)3S1 423.3 nm 2.7 MHz [86, 87]

(6s2)1S0 (6s6p)3P1 555.8 nm 182 kHz

Figure 3.9: Transitions considered for the excited 3P1 state, and their respective wavelength
and line-widths.

state, the 1S0-1P1, 1S0-3P1 and 1S0-3D1 transitions were used. The transitions from the excited

state were summarized in the Fig. 3.9. Although only the transition information for the lower

levels is known [84, 85], the lifetime and relative intensities of the upper transitions could be

used to roughly estimate the transition linewidths [86, 87] of the remaining transitions.

The calculation results are shown in Fig. 3.8. Six different magic wavelengths with neg-

ative polarizability where found, whose wavelengths are 424 nm, 463 nm, 551 nm, 612 nm,

800 nm and 1.53µm. Only the magic-wavelength at 800 nm is far detuned, which makes it

a good candidate for creating the two-dimensional optical lattice. Laser sources at 800 nm

are also readily available, for example using a Ti:sapphire laser or a tapered amplifier.
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3.3.3 Deviation from magic-wavelength for the 1S0-3P1 transition

What would happen if the lattice wavelength is different from the magic-wavelength one?.

When the atom energy increases due to heating, the atom moves inside the trap, which changes

the detuning of the laser cooling and consequently the cooling condition is altered. If the

light-shift deviationδ defined by the change of detuning∆(x , y , z )when the atom moves half

the lattice spacing

δ=∆ (π/2kx ,0, 0)−∆ (0, 0, 0) (3.17)

is positive, then the detuning absolute value increases when the atom moves [see Fig. 3.10(right)],

reducing the efficiency of the Doppler cooling. Similarly, when δ < 0 the detuning absolute

value decreases when the atom moves. Eventually, if the deviation is large, the sign of the

detuning changes producing heating [see Fig. 3.10(left)].
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Figure 3.10: (left) If the polarizability in the excited state is lower than the one in the ground
state, the detuning of the cooling beams is reduced until eventually heating occurs. (right)
A higher polarizability in the excited state do not produce heating, but the efficiency of the
Doppler cooling is reduced.

Figure 3.11a shows the simulation results when the lattice wavelength is shifted from the

magic wavelength. For the simulation the potential depth was fixed to 2V0/kB = 90µK. The

asymmetry of the lifetime dependency on the light-shift deviation δ is in agreement to the

surmise that a negative δ results in heating and consequently a fast reduction in the lifetime,

while a positiveδ only reduces the efficiency of cooling and the lifetime is not greatly affected.

The light-shift deviationδ as a function of lattice wavelengthλlat at a fixel potential depth

2V0/kB = 90µK is shown in Fig. 3.11b. The 3P1-3S1 transition at 680 nm causes a rapid incre-

ment inδ for wavelengths shorter than the magic wavelength. Forλlat = 700 nm the light-shift



CHAPTER 3. QUANTUM GAS MICROSCOPE 28

deviation is δ ≈ 20Γ which reduces the lifetime to ∼ 8000 photons. On the other hand, the

change in deviation is smaller (δ ≈ −3Γ for λlat = 900 nm) but it results in a similar reduction

in lifetime.

In conclusion, simulation results shows that it is possible to obtain∼104 photons by using

a potential depth of 2V0/kB = 90µK in a magic-wavelength potential at λlat = 800 nm. This

potential can be realized using 100 mW of power per beam in the retro-reflected accordion

setup, or using 450 mW of power per beam if the standing wave is created by interference

of six individual beams. Also, even if the lattice wavelength is deviated by 100 nm from the

magic-wavelength, lifetimes of ∼8000 photons can be still obtained.

The disadvantages of using this setup is that long exposure times (∼100 ms) would require

making the system robust against mechanical vibrations. Also, the maximum power obtain-

able at this wavelength is currently limited to 5W using a Ti:sapphire laser pumped by 20 W of

light. Additionally, short wavelengths for the lattice result in increased heating due to spon-

taneous emission, which is a critical factor to consider when realizing quantum simulations

on the Fermi-Hubbard model.

(a) Simulation results of the lifetime depen-
dency on light-shift deviation δ.

(b) Light-shift deviationδ as a function of lattice
wavelength λlat.

Figure 3.11: Simulation and wavelength calculations for deviations from the magic-
wavelength. In both cases the potential depth was fixed to 2V0/kB = 90µK.

3.3.4 Magic-wavelength potential and 1S0-1P1 molasses

Despite the fact that the 1S0-1P1 transition have a high Doppler cooling limit and, in conse-

quence, it is not suitable for cooling, it is interesting to study the lifetime of atoms when this

cooling transition is used. Simulation results in Fig. 3.12a shows the lifetime dependency

on the potential depth 2V0. For this simulation a six beam molasses setup is used, with each
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(a) Lifetime dependency on the potential depth
2V0 for s0 = 1 and∆/Γ =−0.8.

(b) Lifetime dependency on the detuning ∆ for
different saturation intensities s0. The potential
depth is 4 mK.

Figure 3.12: Lifetime in photons as a function of the potential depth 2V0 for a magic-
wavelength potential using the 1S0− 1P1 transition.

beam having a saturation intensity of s0 = 1 and a detuning of∆/Γ =−0.8. For large potential

depths, the lifetime still increase exponentially respect to potential depth 2V0.

The lifetime dependency on the laser-cooling detuning ∆ and saturation s0 is shown in

Fig. 3.12b, where the potential depth was fixed to 2V0 = 4 mK. For s0 = 0.1 the optimal satura-

tion was obtained at ∆/Γ = −0.6. One important difference compared with the cooling with

the 1S0-3P1 transition is the lifetime baseline at ∼5500 photons, which appears even for zero

detuning and high saturation intensities.

The presence of a baseline in the lifetime is related to the fact that atoms in the simulation

start with zero velocity and require a finite time to thermalize. Consider the one-dimensional

case of an atom that scatters photons in random directions. The resultant heating after N

scatterings is N Er 399, where Er 399 is the one photon recoil energy ħhk/2m . When the amount

of heating equals the lattice depth V0 the atom escapes the trap and is lost. The lifetime of the

atom is then

N ≈ V0

Er 399
=

2mV0

ħh 2k 2
≈ 5800 photons (3.18)

for a potential of V0/kB = 2 mK. This value is noticeably close to the photons baseline in Fig.

3.12b.

3.3.5 Estimation of the magic-wavelength for the 1S0-1P1 transition

The magic-wavelength for the 1S0-1P1 transition was estimated using the transitions summa-

rized in Fig. 3.14. In the case of the ground state, the 1S0-1P1, 1S0-3P1 and 1S0-3D1 transi-

tions were used. The transition linewidth information was obtained from [88, 86, 89, 90]. The
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Figure 3.13: Polarizability in the ground 1S0 state and excited 1P1 state as a function of the
optical dipole trap wavelength. Two magic-wavelengths were found at λlat = 775 nm and
λlat = 1.30µm.

(6s6d)3D states also decay slowly into the 1P1 state but were omitted from the calculations as

their transition strength is negligible compared with the nearby 1P1-(6s6d)1D2 transition.

Two magic-wavelengths were found at λlat = 775 nm and λlat = 1.30µm. Creation of a

potential depth of 2V0/kB = 4 mK at λlat = 775 nm would require 10W of power per beam, and

13 W of power per beam in the case of λlat = 1.30µm.
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(6s6p)1P1 (6s7s)3S1 1311nm 25 kHz [89]

(6s6p)1P1 (6s7s)1S0 1077nm 3.0 MHz [90, 88]

(6s6p)1P1 (6s6d)1D2 667.0nm 4.5 MHz [86]

(6s2)1S0 (6s6p)1P1 398.9nm 27.9 MHz

Figure 3.14: Transitions considered for the 1P1 state with their respective wavelength and
linewidth.
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3.4 The deep potential approach

In Sec. 3.3.4 the lifetime of atoms using a magic-wavelength potential and the 1S0-1P1 mo-

lasses was studied. It was found that even for zero detunings and large saturation intensities

of the laser cooling beam, a condition in which laser cooling has no effect, nearly∼5500 pho-

tons could be obtained. Atoms starting at zero velocity require finite time to heat resulting in

a finite number of photons obtained before the atom escapes from the trap. If a deep enough

potential is prepared, would it be possible to attain a large number of photons without the

use of any laser cooling technique? The answer is yes, and it is the strategy selected in this

work for creating a quantum gas microscope of ytterbium atoms.

Without the Doppler cooling requirement, utilization of magic-wavelength potentials is

no longer needed. For the excitation beam the preferable choice is to use the 1S0 − 1P1 as it

is less prone to be affected by Doppler effects and additionally because it produces a higher

microscope resolution.
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Figure 3.15: Creation of a deep potential using a lattice near-resonant to the 1S0− 1P1 transi-
tion.

The conventional method for creating deep potentials is choosing a lattice wavelength

that is near-resonant to a transition from the ground state (see Fig. 3.15). In the case of ytter-

bium, the natural choice is to use a lattice wavelength near-resonant to the strong 1S0 − 1P1

transition. One problem of using this transition is that high-power laser sources are not read-

ily available in the NUV region. If the available power per beam is 100 mW, a lattice wave-

length detuned by only 1 nm (λlat = 400 nm) is necessary to create a potential of 2V0/kB =

4 mK. In this case, even for very small lattice powers the scattering rates in the ground state

are on the order of 10s−1 for potential depths of a few µK, which is not a good condition for

creating a Bose-Einstein condensate (BEC) and a Mott insulator. Another problem of using

this transition is that the wavelengths of the lattice light and the excitation light are similar

and it results difficult to reduce the effects of stray lights.

In this work, instead of creating a deep potential in the ground state, the optical lattice
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Figure 3.16: Creation of a deep potential using a lattice near-resonant to the 1P1 − (6s7s)1S0

transition.

wavelength was selected such that the potential in the excited state is deep and the one in

the ground state is shallow. The selected wavelength was of λlat = 1082 nm, which is red de-

tuned by only ∆lat/2π = 1.2 THz to the upper 1P1 − 1S0 transition (wavelength 1077.2 nm,

natural linewidth 3MHz) which creates a deep potential in the excited state that is 200 times

larger than that in the ground state. Other possible choices would be using a wavelength

near-resonant to the 1P1 − (6s6d)1D2 transition (wavelength 667.0 nm) or the 1P1 − (6s8s)1S0

transition (wavelength 592.7 nm).

To see the advantages of this system, consider first the case in which the excitation light

is not present in the system. As the lattice light is far off resonant from any of the transi-

tions from the ground state, the shallow potential results in small scattering rates (10−3 s−1 for

V0/kB = 2µK) ideal for preparing Hubbard systems in their ground state. During the imaging

process, the resonant excitation light illuminates the atoms and couples the lower 1S0 and ex-

cited 1P1 states. Atoms then experience an average potential between the deep excited-state

potential and the shallow ground-state one. This deep potential is useful to trap the atoms

during the imaging process. Note that for the average approximation to be true, the Rabi fre-

quency should be much larger than the trap frequency in the optical lattice, which is normally

satisfied by the strong 1S0− 1P1 transition with large saturated intensities.

A computer simulation is used to test the deep potential approach and to determine the

initial experimental parameters such as lattice detuning∆lat, lattice power Plat and the satura-

tion intensity of the excitation beam s0. As optical molasses is no longer needed for Doppler

cooling only one excitation beam in the +x direction was used in the simulation. Simula-

tion results are shown in Fig. 3.17, where the lifetime dependency on lattice power Plat for

3 different saturation intensities (s0 = 100, 1000 and 10000) and 10 different lattice detun-

ings (∆lat/2π = 0.1, 0.2, . . . , 1.0 THz) were tested. In general, large saturation intensities pro-
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duce longer lifetimes because the resultant power broadening is useful to reduce the effects

of Doppler shifts and light-shift inhomogeneities; i.e. large saturation intensities maintain

the population in the 1P1 state as high as possible.
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(a) Excitation beam saturation intensity s0 = 100

(b) Excitation beam saturation intensity s0 = 1000

(c) Excitation beam saturation intensity s0 = 10000

Figure 3.17: Simulation results. Lifetime dependency on the lattice power Plat and lattice de-
tuning ∆lat for 3 different excitation beam saturation intensities (s0). Left: Density plot of
the lifetime for 10 different lattice detunings and powers. Right: Dependency of lifetime for
different lattice powers, with each curve representing a different lattice detuning.
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3.5 Lifetime and limitations of the deep-potential approach

In the deep potential approach, the mean lifetime of an atom is limited by three factors:

Heating

When the atoms are excited to 1P1 state by the excitation beam, the consequent scatter-

ing produces a random momentum kick which heats the atom. As there is no cooling

scheme present in the system, the atom total energy will eventually exceed the potential

barrier of the lattice site, resulting in atom hopping.

Dipole trap beam absorption

As a result of the lattice beam being near resonant to the upper 1P1-(6s7s)1S0 transition,

the absorption of the dipole trap beam occurs in the order of a few tens of microsec-

onds. As the potential in the (6s 7s )1S0 state is strongly repulsive and the decay rate is

comparable to the trap frequency, the atom is lost after a number of excitations.

Branching to the 3P1 state

The absorption of the dipole trap beam also leads to a branching to the 3P1 state. The

branching ratio of the (6s 7s )1S0 state is known to be approximately 1:10 [90, 88]. As the

state 3P1 is long lived and the potential in this state is shallow, the atom will be lost if it

falls into this state.

Heating ODT Absorption
ODT Absorption

+ Branching

Figure 3.18: The three factors limiting the lifetime on the deep potential approach.

The heating due to N random photons scattering is

∆E =
p 2

2m
=
(
p

N ħhkexc)2

2m
=N
ħh 2k 2

exc

2m
, (3.19)

which is proportional to the number of scattered photons. When the kinetic energy is com-

parable with the site potential V0 ≈ ∆E the atom will escape from the site. The lifetime (in

photons) nheat due to heating can be written as

nheat =N = a V0 (3.20)

where a is a constant in the order of a ≈ 2m/ħh 2k 2
exc.
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Figure 3.19: Simulation lifetime results for different ∆lat. Each curve was fitted with the life-
time in Eq. 3.23.

The other two factors related to the dipole trap beam absorption can be considered as one,

as both of these rates are proportional to the population in the (6s7s)1S0 state. Consequently,

the lifetime (in photons) due to the dipole trap beam absorption nexc can be expressed as

nexc∝ 1

ρ55
= b
∆lat

V0
(3.21)

where b is a constant and ρ55 is the population in the (6s7s)1S0 state. Finally, if these two

process are independent, the total lifetime (in photons) results in

n =
�

1

nheat
+

1

nexc

�−1

=
�

1

a V0
+

V0

b∆lat

�−1

. (3.22)

This model is tested using the simulation results obtained in Fig. 3.17. To check the de-

pendency of lifetime on lattice power Plat, Eq. can be rewritten as

n =
�

1

APlat
+

Plat

B

�−1

. (3.23)

where A and B are two parameters depending only in the lattice detuning∆lat

A(∆lat) = a
V0

Plat
∝ 1

∆lat
, B (∆lat) = b

Plat

V0
∆lat∝∆2

lat (3.24)

as V0∝ Plat/∆lat. Figure 3.19 shows the fitting result of each simulation results for different
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lattice detunings∆lat.

The obtained parameters A and B for each of the detuning∆lat is shown in Fig. 3.20. Each

of the parameters was fitted using a power function.

Figure 3.20: Dependency of parameters A and B on the lattice detuning∆lat for the simulation
results. Each curve was fitted using a power function.

Knowing the parameters A and B , the maximum lifetime obtainable for a given Plat is:

nmax(Plat) = n (Plat,∆best) :
∂ n

∂∆lat
(Plat,∆best) = 0. (3.25)

Table 3.1 summarizes the results for three different saturation intensities. For high satu-

ration intensities of the excitation beam, the lifetime model A∝∆lat
−1 ∧B∝∆lat

2 is in well

agreement with the fitting results.

s0 A (104 photons/W) B (104 photons W) nmax (104 photons) ∆best (THz)

104 1.63(3)∆lat
−1.13(4) 14.8(9)∆lat

2.25(3) 1.8Plat
0.33 0.64Plat

0.59

103 1.42(1)∆lat
−1.15(8) 6.6(6)∆lat

1.88(6) 1.3Plat
0.24 0.71Plat

0.65

102 1.11(4)∆lat
−0.71(6) 0.98(6)∆lat

0.87(6) 0.53Plat
0.10 1.22Plat

1.26

Table 3.1: Parameters A and B, max lifetime and best detuning for different saturation inten-
sities. The units of∆lat and Plat are THz and W, respectively.

3.5.1 Excitation beam radiative force effects

From the simulation results in Fig. 3.17, it can be seen that for large detunings∆lat and small

lattice powers Plat the fitting does not coincide well with the experimental data. This is due to

the effect of the excitation beam, whose radiative force tilts the lattice potential reducing the
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effective trap force. The reason for not using an excitation beam in the retro-reflected setup is

only technical, as it would require to introduce expensive 3” optics with broadband coatings

capable of transmitting the accordion beam and the excitation beam.

Excitation

beam

=

Figure 3.21: As the excitation beam is not in the retro-reflection setup, the beam exerts a net
radiative force on the atoms, tilting the optical lattice potential while reducing the effective
lattice depth.

The total potential including the potential due to the radiative force of the excitation beam

is:

V (x , y , z ) =−V0 sin(kz z )2
�
cos(kx x )2+ cos(ky y )2

�− ħhkexcΓ

2

s0

1+
�

2∆
Γ

�2
+ s0

x (3.26)

Here, we consider the worst scenario, in which the saturation is large (s0≫ 1) and the detuning

including Doppler shift is negligible (2∆/Γ ≪ s 0). Then:

V ≈−V0 cos(kz z )2
�
cos(kx x )2+ cos(ky y )2

�− ħhkexcΓ

2
x (3.27)

The potential maxima and minima for z = 0 corresponds to:

∂ V

∂ x
=V0kx sin(2kx x )− ħhkexcΓ

2
= 0 (3.28)

resulting in

x0 =
1

2kx
arcsinζ , x1 =

π

2kx
− 1

2kx
arcsinζ (3.29)

where ζ = ħhkexcΓ
V0kx

. Note that for ζ = 1, both points coincide (x0 = x1) and the lattice tilts com-

pletely. ζ is then an important scaling factor to determine whether the excitation beam ra-

diation effects are negligible or not. For the experiments parameters, the minimum required

potential Vlimit is:

Vlimit =
ħhkexcΓ

2kx
= 1.9 mK (3.30)

The resultant effective potential can be calculated replacing Eq. 3.29 in Eq. 3.27.

∆V =V (x1, y , 0)−V (x0, y ,0) =V0

hp
1−ζ2−ζ
�π

2
−arcsinζ
�i

(3.31)

Using this equation the reduction of effective potential for different values of ζ can be calcu-

lated. These values are summarized in the following table.
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ζ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
∆V
V0

100% 85% 71% 57% 45% 33% 24% 16% 9% 3% 0%

Table 3.2: Effective potential ∆V compared with V0 for different values of ζ. For a potential
depth that is 10 times larger than Vlimit, the effective potential is reduced by 15%.

Knowing the reduction of the potential due to the radiative force, the lifetime τ1 can be

rewritten as:

τ1 = APlat

hp
1−ζ2−ζ
�π

2
−arcsinζ
�i

(3.32)

= APlat

�√√
1− s

Plat

2− s

Plat

�
π

2
−arcsin

s

Plat

��
(3.33)

As theζparameter depends on the lattice potential, a new parameter s (∆lat) = ζPlat =
ħhkexcΓ
2V0kx

Plat

is defined, which is independent to the lattice power, as V0∝ Plat. Using this equation for the

lifetime, fitting for large∆lat can be greatly improved, as shown in Fig. 3.22.

Figure 3.22: Lifetime of atoms in simulation, correspoding to ∆lat/2π = 0.9 THz and s0 =
10000. The solid lines are fittings corresponding to s = 0 (no radiative force effects) and s > 0.

s(W) A (104 photons W) B (104 photons/W)

Without radiative force 0 2.06(15) 12.3(79)

With radiative force 0.078(16) 2.98(27) 4.89(85)

Table 3.3: Parameters A and B obtained from fitting the simulation results for ∆lat/2π =
0.9 THz and s0 = 10000. Two different fitting models (with and without radiative forces) are
compared.

The obtained parameters for each fitting is summarized in the following table. The added

parameter tends to increase the resultant value of A and decrease the value of B. Also, from
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the obtained s it is possible to estimate the minimum required lattice power as Plat = s when

ζ= 1. For these parameters, the potential depth is

V0 = 1.2(4)mK for Plat = 0.078(16)W and∆lat/2π= 0.9 THz (3.34)

which is in very well accordance to the potential obtained in Eq. 3.30.

3.6 Solid immersion lens

Observation with a microscope system is limited by the diffraction limit:

d =
0.61λ

n sinα
(3.35)

where λ is the wavelength of the incident light, n is the index of refraction of the medium

being imaged in, and α is the half-angle subtended by the optical objective lens. In order

to improve the diffraction limit of a lens system, it is necessary get closer to the object (to

increment the half-angle) or use a medium with better refraction index than the air. The oil

immersion lens works with that principle: By filling the space between the object and the lens

with oil, the diffraction limit can be improved by a factor of ∼ 1.5.

NA=0.55NA=0.55

NA=0.80

n=1.47

NA=0.80

NA=0.80

Figure 3.23: A solid immersion lens placed between the sample and the objective lens in-
creases the numerical aperture of the system.

When observing an optical lattice, it is difficult to get closer to the lattice as the optical

lattice resides inside a vacuum chamber, and techniques as the oil immersion lens cannot be

used for obvious reasons. A solid immersion lens (SIL) works in the same principle as liquid

immersion lens, with the liquid replaced by a solid lens of high refractive material. By simply

introducing a solid immersion lens between the sample and the objective lens, the resolution

of the system can be improved by a factor of the index of refraction of the hemispherical lens

[91]. This technique was utilized to observe Rb atoms with resultant high numerical apertures

of ∼ 0.8[46]. Another importance of the SIL here is that it makes possible to create a stable
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optical trap by fixing the position of the lattice with respect to the SIL flat surface by using the

optical accordion technique. This technique will be explained in detail in Sec. 4.6.
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Figure 3.24: Drawing of the old and new versions of the SIL.

The SIL used for this work and also for the previous experiments are schematically shown

in Fig. 3.24. Both versions of the SIL are made of fused silica glass. The new version of the

SIL it is divided into three parts. The upper part is a spherical cap with a radius of 8 mm and a

height of 1.32 mm, corresponding to a numerical aperture of 0.55. The middle part consists of

a 3-mm-thick disk with a diameter of 24 mm, and the lower part is a 3.68 mm thick disk with

a diameter of 11.5 mm. All three parts were optically contacted, and the lower flat and upper

spherical surfaces were super-polished to reduce stray light. The old version of the SIL was

formed by only two optically-contacted parts, consisting in 3 mm thick disk with a diameter

of 15 mm and a spherical cap with a radius of 5 mm and a height of 3 mm, corresponding to a

numerical aperture of 0.9.

The new version of the SIL is attached to the glass cell by placing the SIL on the cell upper

surface, were a through hole of 12mm of diameter was opened. The SIL was finally glued to

the glass cell using a vacuum leak sealant (SPI Vacseal) compatible with ultrahigh vacuum.

The old version of the SIL, on the other hand, is located inside the cell. The lens was attached

into a jig and glued into the upper wall of the glass cell (see Fig. 3.25).

The new version of the SIL have two important advantages respect to the old one. The

first advantage is that the 3 mm thick glass present over the old version produces spherical

aberrations that needs to be compensated with specially designed objectives lenses. These
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Figure 3.25: SIL attached to the glass cell.

objective lenses are not commercially available and are often high-priced. The glass also pro-

duces transmission losses that reduces the collection efficiency of the microscope system.

The second advantage is that the aperture of the spherical cap was reduced to 0.55 (which is

the same aperture of the objective lens). As shown in 3.26, a beam incident onto the flat sur-

face of the SIL by an angle of incidence of 55.8◦ (the Brewster angle) is refracted into an angle

slightly larger than the aperture of the spherical cap. This angle of refraction ensures that the

beam will enter and exit from flat surfaces, resulting in no stray reflections that can produce

undesired interference patterns.

re
�e
ct
io
n

Figure 3.26: The new version of the SIL avoids reflections by reducing the aperture of the
spherical cap.



Chapter 4

Experiment: Transport of atoms to the

solid immersion lens surface

4.1 Introduction

As seen in the previous chapter, the solid immersion lens is a very useful tool that can be used

to increase the numerical aperture and collection efficiency of the microscope system. An-

other important feature of this lens is the possibility of creating a standing wave by reflecting

a laser beam onto the flat surface of the lens, and using the resulting standing wave as an

optical trap. As the position of this standing wave is fixed with respect of the lens surface, it

is possible to trap atoms with high stability at a fixed position respect to the lens. This tech-

nique, which is denominated “optical accordion”, will be explained in detail in the following

sections.

For experiments using trapped atoms in a two-dimensional optical lattice, ultra-high vac-

uum and good optical access to the sample is desired. For this reason, the solid immersion

lens is allocated in a square glass cell separated from the main metallic chamber, where the

ultra-cold atoms are first prepared. Observation by a high resolution microscope system re-

quires that atoms remain confined in a pancake-shaped region which is thinner than the

depth of field of the objective lens and is located sufficiently close to the surface of the lens. In

rubidium experiments, a system of multiple coils was used to create a moving magnetic trap,

which was used to transport the atoms to the surface of the lens. In the case of ytterbium, the

lack of electronic spin impedes the use of magnetic fields.

This chapter focuses on the experimental procedure to transport the atoms to the surface

of the solid immersion lens using an all-optical method. The procedure is schematized in Fig.

4.1, with the numbers representing the temperature of the atoms, and distance from the SIL

surface to them.

43
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Figure 4.1: Experimental steps to prepare a BEC under the surface of the SIL. The numbers
corresponds to the atomic cloud temperature and the distance to the surface of the SIL.

4.2 Oven

At room temperature, the saturated vapour pressure of ytterbium is roughly 3×10−21 torr and

practically no atoms cannot be obtained from a solid sample. The conventional method to

increase the number of atoms is increase the vapour pressure to ∼ 10−3 torr by heating the

sample with an oven. The saturated vapour pressure of ytterbium as a function of tempera-

ture is shown in Fig. 4.2. The solid line is a theoretical estimation using the experimentally

obtained heat of sublimation and applying it to the Clausius-Clapeyron equation [92]

log10 p ≈ 6.943− 8656

T
−0.0004647T +0.6390 log10 T , (4.1)

where p is the pressure in torr, and T is the temperature in K. The four points in the graph

corresponds to data in [93].

Figure 4.2: Saturated vapour pressure of ytterbium as a function of temperature.

In the experiment, the oven (EpiQuest STHKC-1300SH-lC) is heated to 700 K, which results

in a vapour pressure of 1×10−4 torr. This pressure is enough to obtain a sufficient number of

atoms in the magneto-optical trap. The heated atoms exit from a 2.6 mm diameter orifice and

are collimated using a 30mm long, 4 mm inner diameter nozzle that also serves as differential



CHAPTER 4. EXPERIMENT: TRANSPORT OF ATOMS TO THE SIL 45

pumping tube.

4.3 The vacuum chamber

As the oven is heated to 700 K, the vacuum in the chamber surrounding the oven degrades

to 10−8 torr. To reduce losses due to background collisions, main experiments realized in the

glass cell requires a vacuum level of 10−11 torr. To reach this vacuum level, the vacuum system

is divided in three chambers separated with a nozzle that acts as differential pumping tube

and isolates the vacuum up to 1 or 2 orders of magnitude, as shown in figure 4.3.

Oven
Chamber

Main
Chamber

Spectography
Chamber

~10-11 

torr
~10-10 

torr
~10-8 

torr

IP (150L) IP (70L)
IP (150L)

TSP

Zeeman
slower

DPT

Figure 4.3: Schema of the vacuum chamber, showing the three main chambers. IP: Ion pump,
TSP: titanium sublimation pump, DPT: interconnected by differential pumping tubes

Figure 4.4: Photo of the vacuum chamber.

The glass cell is attached to the main chamber, where the main experiments are realized,

having an ultra high vacuum (UHV) level of ∼ 10−11 torr. The main chamber is pumped with

a 150 litters ion pump (Varian VacIon Plus 150) and a titanium sublimation pump (TSP). The

spectrography chamber is between the main chamber and the oven chamber, and have a vac-

uum level of ∼ 10−10 torr, and is connected to the main chamber through the Zeeman slower.
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Spectrography experiments using the atomic beam are realized in this area. It is pumped with

a 70 litters ion pump (Varian VacIon Plus 75). The oven chamber is pumped with a 150 litters

ion pump and have a vacuum level of 10−9 torr. Initially, the whole chamber was baked out to

250 ◦C for 2 weeks.

4.4 Laser cooling of Yb atoms

Ytterbium have two suitable transitions for laser cooling, the 1S0→ 1P1 strong transition and

the 1S0→ 3P1 narrow inter-combination transition. Cooling properties of both transitions are

summarized in table 4.1.

1S0↔ 1P1
1S0↔ 3P1

Wavelength 398.8 nm 555.8 nm

Natural linewidth 2π× 27.9 MHz 2π× 181 KHz

Saturation Intensity 57 mW/cm2 0.14 mW/cm2

Doppler cooling limit 650 µK 4.4 µK

Table 4.1: Characteristic values for lowermost transitions of 174Yb

Initial experiments with Ytterbium were realized in 1999 using the 1S0 → 1P1 transition,

obtaining 106 atoms [64]. However, a branching from the 1P1 excited state to the sub-stable

triplet states 3P0 and 3P2 limited the final number of trapped atoms. Afterwards, the same

team succeeded in magneto-optical trapping of Ytterbium atoms with the intercombination

transition, obtaining a much larger number of atoms at a temperature of 20 µK [94].

In this experiment the 1S0 → 3P1 transition is used for magneto-optical trapping, while

the Zeeman slower utilizes the strong 1S0→ 1P1 transition for slowing down the atomic beam

exiting from the oven.

4.4.1 Zeeman slower

Atoms heated by the oven have a temperature of ∼ 700 K and a RMS speed of ∼ 300 m/s. In

contrast with this velocity, the capture velocity of a magneto optical trap (MOT) using the nar-

row transition 1S0→ 3P1 is less than 10 m/s, meaning that only a small portion of the atomic

beam can be captured by the MOT. In order to increase the number of trapped atoms, the

temperature of the atomic beam needs to be further reduced. The conventional method to

do this is by using a Zeeman slower device which combines the laser cooling technique with

the Zeeman shift produced by a strong magnetic field.

The Zeeman slower device used in the experiment is shown in Fig. 4.5. Atoms that exit

from the oven are collimated into an atomic beam and travel through a long tube towards



CHAPTER 4. EXPERIMENT: TRANSPORT OF ATOMS TO THE SIL 47

Yb atomic

beam

Low current coil

High current
coil

Erasing
coil

300 mm

Main Chamber

Zeeman slower
beam

Figure 4.5: The Zeeman slower device. The atomic beam is slowed down by a laser cooling
beam detuned to the 1S0 → 1P1 transition. A magnetic field is used to create a Zeeman shift
that cancels the change in the Doppler shift.

the main chamber. A laser beam detuned from the 1S0 → 1P1 transition is shinned into the

atomic beam in the opposite direction, slowing the atoms by laser cooling. To understand

why a magnetic field is used, the equation of radiative force exerted by a laser beam is:

F =
ħhk

τscat
= ħhk × Γ

2

s0

1+4
�
∆−k v
Γ

�2
+ s0

(4.2)

where Γ is the natural linewidth of the 1S0 → 1P1 transition, v is the velocity of the atom,

and s0, k and∆ are the saturation intensity, wave-number and detuning of the cooling beam.

Note that the force is maximum when the detuning of the laser beam equals the shift due to

Doppler effect (∆ = k v ). Suppose that the laser beam detuning is set such that the radiative

force is maximum for the atom initial velocity. When the atoms slow down, the change in

velocity leads to a change in Doppler shift, reducing the effectiveness of the cooling process.

A magnetic field is used to create a Zeeman shift that cancels the change in Doppler shift,

such that:

∆−k v (x )−αB (x ) = 0 (4.3)

for every position x , where B is the magnetic field at the position x , and α is a constant de-

termined by the Zeeman effect. The acceleration exerted by the laser cooling beam at every

position x is then:

a =
F

m
= ħhk × Γ

2

s0

1+ s0
. (4.4)

For large saturations (s0 ≫ 1) this acceleration is roughly 5 × 105 m/s2, which can be used

to cool down atoms travelling at a speed of 300 m/s in a few milliseconds. The distance ds

required to slow down the atoms is:

ds =
v0

2

2a
≈ 100 mm (4.5)
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where v0 = 300 m/s is the initial velocity. The required shape for the magnetic field B (x ) is

then

B (x ) =
∆−k v (x )

α
=

k v0−pv0
2−2a x

α
=

k v0

α

�
1−
√√

1− x

ds

�
(4.6)

where g is the Lande g-factor and µB is the Bohr magneton. For x = xs , the resultant peak

magnetic field is

B (xs ) =
k v0

α
=

kħh v0

gµB
≈ 560 G. (4.7)

The required magnetic field is created using a set of 3 coils, as shown in Fig. 4.5. The first

coil is made using a 1 mm diameter coil (low current coil), while the second (high current coil)

and third (erasing coil) coils are created using a 3 mm hollow pipe which is cooled down with

water passing inside the pipe. The position of the atoms trapped in the center of the main

chamber by the MOT is highly dependent on both the offset and gradient of the magnetic

field. The third coil is used to eliminate the magnetic field at the center of the main chamber

by creating a negative magnetic field. The resultant magnetic field is shown in Fig. 4.6.

Figure 4.6: Magnetic field generated by the Zeeman slower coils compared to the theoretical
required magnetic field.

The currents used for the low current coil, high current coil and erasing coil are 2.1 A, 67 A

and 67 A respectively. At the center of the main chamber (x = 0.345 m), the resultant bias

magnetic field is less than 0.1 G, while the gradient magnetic field is less than 0.2 G/cm. The

ideal curve in the plot was drawn using the parameters B (xs ) = 487 G and xs = 218 mm.

To test the performance of the Zeeman slower, the fluorescence spectrum of the atomic

beam is measured at the main chamber. The probe beam intersects the atomic beam at an

angle of 80 degrees. Due to the Doppler shift effects, the resultant fluorescence spectrum re-

flects the velocity distribution of the atomic beam. The results of this experiment is shown in
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Fig. 4.7. When the Zeeman beam is activated, the fast part of the spectrum (left side of the

graph) moves to the show part (right side of the graph), indicating that the atoms are being

effectively slowed down.

Figure 4.7: Spectrography of the atomic beam showing the performance of the Zeeman
Slower.

The laser source for the Zeeman beam at 398.9 nm is generated by a frequency doubling

bow-tie ring cavity with a BiBO crystal. In the initial experiments, a PPKTP crystal in a bow-tie

cavity was used to second harmonic generation, but the conversion efficiency was low (13%

for a 1 W input) and optical damage was observed in short-time operation. The fundamen-

tal light is generated by a Ti:Sapphire laser (∼ 1.6 W at 798 nm, Coherent MBR-110) which is

pumped by a green solid-state laser (10W at 532 nm, Coherent Verdi V-10). The output power

of the ring cavity is typically ∼ 300 mW with very good short-time and long-time stability.

An ultra-low expansion cavity (Finesse 500, FSR 1.5 GHz) is utilized to frequency lock the

external cavity of the Ti:Sapphire laser. The frequency of the Zeeman Slower beam is detuned

−2π×700 Mhz. Two double pass acousto-optic modulator are used to create the light for the

absorption imaging system.

4.4.2 Magneto optical trap

After slowing down the atoms with the Zeeman Slower, atoms are trapped into the magneto

optical trap (MOT). This trap is composed by three retro-reflected, orthogonal beams that are

red-detuned to the 1S0→ 3P1 transition and provide Doppler cooling in all directions. As the

cooling beams themselves only reduce the velocity of the atoms and do not provide a restoring

force, two coils in the anti-helmholtz configuration are used to add a magnetic field gradient,

which provides the required restoring force to the cooling beams. As a result, all the atoms
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Figure 4.8: Laser system for 399 nm (1S0↔ 1P1 transition)
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Figure 4.9: Atoms slowed down by the Zeeman slower are trapped into the magneto optical
trap, which combines Doppler cooling and a quadrupole magnetic field formed by two coils.

The two coils that form the quadrupole magnetic field are separated by an average dis-

tance of 100 mm, with each coil having 150 turns and an average coil diameter of 65mm;.

When a current of 0.3 A flows through the coils, a gradient magnetic field of 0.5 G/cm in the

XY axis and −1.0 G/cm in Z axis is created.

Each cooling beam has a beam diameter of 1 cm and a power of 13 mW and 26 mW in the

XY and Z directions, respectively. This results in a laser intensity of I = 17 mW/cm2 = 118Is

and 33 mW/cm2 = 236Is in the XY and Z directions, respectively. The detuning is set to −2π×
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Figure 4.10: Atoms trapped in the MOT after 10 seconds of loading time.

2 MHz = 11Γ . Note that the intensity and detuning used here are larger than the required

for optimal laser cooling, where I ≪ Is and ∆ = Γ/2. These large intensities and detunings

increase the capture velocity range, which results in an increased number of atoms in the trap.

Figure 4.10 shows the trapped atoms inside the main chamber after 10 seconds of loading.

Figure 4.11: Absorption image of the atoms trapped in the MOT after a time-of-flight of 11
ms.

To load as much as atoms as possible in the optical dipole trap, the density of the trapped
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atoms is increased (compression) while reducing their temperature. This is done by incre-

menting the current of the coils to 3 A during 50 ms, while decreasing the intensity and de-

tuning of the cooling beams. The trapped atoms after compression is shown in Fig. 4.11. The

final number of atoms after compression and cooling is 3×108. The temperature of the atoms

was 13µK.
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Figure 4.12: Laser system for the 1S0↔ 3P1 transition at 556 nm.

The 555.8 nm laser beam is generated by a frequency doubling bow-tie ring cavity with

a PPKTP crystal. The fundamental light is generated by a fiber Laser (Menlo system). An

isolator and a reflective grating are used to protect the fiber laser against back-reflections.

The output power of the ring cavity is typically∼ 200 mW at 555.8 nm. An ultra-low expansion

cavity (Finesse 5000, FSR 1.5 GHz) is utilized to frequency lock the fiber laser.



CHAPTER 4. EXPERIMENT: TRANSPORT OF ATOMS TO THE SIL 53

4.5 Transport using optical dipole traps

Evaporative cooling using a crossed optical dipole trap (ODT) is the conventional method to

further cool down Yb atoms after the MOT. In this method, atoms in the MOT are first loaded

into a single ODT. The second ODT is then introduced, which crosses the first ODT at the

center of the trap. The intensity of the first ODT is gradually reduced resulting in evaporative

cooling, where the hot atoms are removed while the overall temperature of the remaining

atoms is reduced. In this experiment, a cross ODT is also utilized to reduce the temperature of

the atoms, but each of the ODT beams have the additional purpose of transporting the atoms

near the surface of the SIL. After loading the atoms into the first, horizontal ODT, the trap

is translated 450 mm from the center of the MOT chamber to a distance of few millimeters

away under the surface of the SIL. The second, vertical ODT is then introduced to realize

evaporative cooling. After cooling the atoms, the vertical ODT is converted into a conveyor

belt, which is useful to further transport the atoms to a distance of a few tens of micrometers

to the SIL surface.

4.5.1 The optical system

The high power optical beam required for optical trapping is derived from a continuous-wave,

frequency doubled, diode-pumped solid-state laser (Coherent Verdi V18) with an output of

18 W at a wavelength of 532 nm. The optical system is shown in Fig. 4.13. The same optical

source is used to generate the horizontal and vertical ODT beams. Details of the system will

be explained in the following sections.

4.5.2 Horizontal ODT: Loading

Atoms trapped in the MOT are first loaded into the horizontal ODT by focusing the ODT beam

into the center of the compressed atomic cloud. The focused beam is created by a pair of

lenses situated on top a moving air-bearing stage (Aerotech ABL15050). The air-bearing stage

can move up to 500 mm and it ensures a smooth movement during the transport process

reducing the heating effects produced by mechanical vibrations. The beam profile at the waist

of the horizontal ODT is a circular beam with a radius of 29µm resulting in a potential depth

of 560µK. The absorption images before and after loading the atoms in the ODT are shown

in Fig. 4.14. Initially 3.5× 107 atoms at a temperature of 50µK are loaded into the horizontal

ODT.

4.5.3 Horizontal ODT: Lifetime and temperature

The number and temperature of atoms as a function of trap holding time is shown in Fig. 4.15.

The number of atoms is shown in a semi-logarithmic graph and it was fitted using a double
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Figure 4.13: Optical system for the horizontal and vertical ODT derived from a 18 W,
frequency-doubled DPSS laser.

Figure 4.14: Absorption images of atoms after loading into the horizontal ODT.
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Figure 4.15: Number and temperature of atoms after loading as a function of holding time.

exponential curve

N (t ) =N1e −t /τ1 +N2e −t /τ2 (4.8)

resulting in decay times of τ1 = 5 s and τ2 = 24 s. The first decay time is due to two-body

collisions that results in evaporative cooling of atoms in the trap. The evaporative cooling

results in a decrease of temperature, as seen in the temperature plot in Fig. 4.15. The second

decay time is due to one-body losses such as collisions with background gas and scatterings

due to the optical-dipole trap.

lens lens

fast

shutter

slow

shutter

Slow shutter

Rise time 1 ms

Fast shutter
Rise time 40 μs

Figure 4.16: Fast and slow shutter system used for temperature measurement.

Note that there are two mechanical shutters for the horizontal ODT in the optical system

(Fig. 4.13). To measure the temperature of trapped atoms the conventional method is to

suddenly release the trap and measure the thermal expansion of the atoms. This rapid release
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condition is satisfied when the release time is faster comparable to the inverse of the trap

frequency of the dipole trap. Such fast release speeds are realized using a “fast mechanical

shutter” that shuts the beam at the point where its focused, as shown in Fig. 4.16. As the

high power density at the beam waist may damage the mechanical shutter, a second ”slow

mechanical shutter“ is activated at almost the the same time, which shuts down the beam a

few milliseconds after the fast shutter. This ensures that the high power density only impacts

the fast shutter for very short times.

4.5.4 Horizontal ODT: Transport

Figure 4.17: Absorption imaging of the atoms in the horizontal ODT after transport.

Figure 4.18: Potential depth along the propagating axis of the horizontal ODT for different
stage accelerations.

Atoms trapped in the horizontal ODT are mechanically transported by translating the po-

sition of the optical trap. The pair of lenses that focuses the horizontal ODT are located on
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top of a translating air-bearing stage. During transport, the position of the stage moves by

450 mm to transport the atoms a few millimeters below the surface of the SIL. The absorption

imaging images of the atoms after transport are shown in Fig. 4.17.

The stage movement consists in an uniformly accelerated and decelerated motion with an

acceleration of 0.3 m s2, taking 2.5 s to move a distance of 450 mm. Although the air-bearing

stage used in this experiment is capable of accelerations up to 1 m/s2, such fast accelerations

result in spilling due the inertial force experimented by the atoms. Figure 4.18 shows the po-

tential depth including the inertial force of the stage along the propagation axis of the hori-

zontal ODT for different stage accelerations. The curves where calculated for a beam with a

power of 16 W and a beam waist of 29µm. For the maximum acceleration of 1 m/s2 the po-

tential depth is greatly reduced, resulting in spilling of atoms.

Figure 4.19: Number of atoms after transport as a relation to the stage acceleration.

Figure 4.20: Number and temperature of atoms after transport as a function of holding time.

The relation between number of atoms after transport and the acceleration of the stage
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was experimentally checked. The results are shown in Fig. 4.19. For an acceleration of 1 m s2

all the atoms were lost. Low accelerations resulted in a larger number of atoms after transport.

The number and temperature of the transported atoms as a function of trap holding time

is shown in Fig. 4.20. The number of atoms is shown in a semi-logarithmic graph and it was

fitted using an exponential curve. The resultant lifetime was of 6 s. The temperature of the

atoms also is reduced during the first seconds of holding time, which is an indication that

evaporative cooling continues after transport.

The initial number of atoms and temperature was 1.4×107 and 17µK, respectively. Note

that the number of atoms and temperature are lower compared to that in the MOT chamber

after a holding time of 2.5 s (equivalent to the transport time), which means that the inertial

force experimented during transport accelerate the evaporative cooling process.

4.5.5 Vertical ODT: Evaporative cooling using a cross ODT

After the first stage of transport using the horizontal ODT, atoms are positioned 2.7 mm un-

der the surface of the solid immersion lens. At this point, a second beam (vertical ODT) is

introduced, intersecting the horizontal ODT at the beam waist to form a crossed ODT trap.

The evaporative cooling procedure is schematized in Fig. 4.21. In order to eliminate reflec-

tions from the surface of the SIL, the beam incidence angle is at Brewster angle respect to the

plane surface of the lens. The polarization was carefully selected using a Gran-laser prism

(see Fig. 4.13). Note that the Brewster angle for fused silica at 532 nm is of 34.4◦, which is 1◦

larger than the aperture of the spherical cap of the SIL (a numerical aperture of 0.55 is equiva-

lent to 33.4◦). This ensures that both the incident beam and the retro-reflected beam (see the

vertical transport section) will both enter and exit from flat surfaces, thus avoiding any stray

light interference that may complicate the transport process.

To align the horizontal ODT with the vertical one, a 12mm motorized actuator (Thor-

labs Z812) was attached to the mirror mount that reflects the horizontal ODT right before the

viewport. The motorized actuator is attached to the horizontal knob of the mirror, and can

be moved with 0.2 µm precision. As the distance between the two knobs is approximately

60 mm, and the distance from the mirror to the center of the solid immersion lens is 600 mm,

by moving the actuator by 0.2µm the beam position at the bottom of the solid immersion

lens moves approximately 4µm. For a vertical beam with a beam waist of 50µm, it suffices to

move the horizontal beam at intervals of 40µm. A distance of±1 mm can be covered within 50

measurements, which takes less than 20 minutes for this experiment speed. To verify that the

two beams are crossed, the horizontal beam power is reduced to 1 W. When the two beams

are correctly crossed, evaporative cooling occurs and the atoms shrink to the intersection of

the two crossed ODT.

To control the intensity of the horizontal ODT, the common approach is to use an acousto-



CHAPTER 4. EXPERIMENT: TRANSPORT OF ATOMS TO THE SIL 59

SIL

YbHorizontal
ODT

glass cell
vacuum side

air

(a) Atoms are originally trapped inside the horizontal ODT positioned
2.7 mm under the solid immersion lens.
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(b) The vertical ODT beam is introduced, intersecting the horizontal
ODT beam at the beam waist. Evaporative cooling is realized by de-
creasing the intensity of the horizontal ODT.

Figure 4.21: Cooling of atoms by evaporated cooling.

optical modulator (AOM). The intensity of the diffracted beam can be controlled by changing

the amplitude of the input signal. One of the disadvantages of this method is that the intensity

of the first order diffraction is usually around 80%, and consequently, not all of the power can

be used for the optical trap. Also, when the amplitude of the input signal changes, the pointing

stability of the diffracted beam deteriorates. In this experiment, instead of using an AOM,

a motorized half-wave-plate in conjunction with a polarized-beam splitter (PBS) is used to

control the power of the horizontal ODT, as shown in Fig. 4.22. By using this method nearly

all the power can be used in the optical trap. Additionally, when the power of the horizontal

ODT is reduced by moving the half-wave plate, instead of dumping the remaining power it

can be recycled and used back for the vertical ODT.

The utilized motor is a stepping motor (Plexmotion PMSB-B56D1DHW) with a hollow

axis with inner diameter of 16 mm. The micro-stepping driver (PDSA-BA) is able to move the

motor in 16 micro-steps, with one micro-step representing a rotation of π/1600. The timing

for the movement is controlled by a micro-controller Arduino Nano. The driver have 5 TTL in-

puts: CW and CCW move the motor in clockwise or counterclockwise direction, respectively,

when the corresponding TTL input changes its value (step-down or step-up). ENABLE input

enables or disables the current to the motor, STEP activates or deactivates micro-stepping,

and AUTO_CURRENT manages whatever the motor current stops automatically after 100

ms of input inactivity. For our experiments we change only CW and CCW inputs, which are
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Figure 4.22: System used to control the intensity of the horizontal ODT beam consisting in a
motorized wave-plate and polarized beam splitter.

controlled by the digital output of the micro-controller Arduino Nano. Initially, the motor

is initialized such as the transmittance of the PBS after the motor-controlled wave-plate is

maximum. To do this, the transmitted power is measured with a photo-detector and feed-

backed to the micro-controller. When the TTL input 1 is activated, the motor rotates 360

degrees (3200 microsteps) and finds the optimal initial position. The TTL input 2 control-

sãČżthe evaporated cooling: When the input is activated, the motor rotates and the intensity

of the horizontal ODT is gradually reduced, and when the input is off, the motor goes back to

the initial position.

The vertical ODT beam have a beam waist of 40µm and a final power after evaporation of

1 W . After 4 s of evaporative cooling, 1.0×106 atoms at a temperature of 2µK were obtained.

Further cooling of the atoms is possible, but excessively cooled atoms are more susceptible to

heating and loss during the vertical transportation stage. Absorption images of atoms before

and after evaporation are shown in Fig. 4.23.
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Horizontal ODT (before evaporation)

Cross  ODT (after evaporation)

Figure 4.23: Absorption images of atoms before and after evaporative cooling. The final num-
ber of atoms is 1.0×106 atoms at a temperature of 2µK.

4.5.6 Vertical ODT: Transport

The second stage of transport consists in using the vertical ODT as conveyor belt to transport

the atoms vertically. Details of the transport process are schematized in Fig. 4.24. To adia-

batically transform the vertical ODT into a conveyor belt, a motorized quarter-wave plate in

conjunction with a PBS is used to gradually increase the intensity of the retro-reflected beam

(see the conveyor belt system in Fig. 4.13) in 100 ms. After the vertical ODT is converted into a

conveyor belt, atoms are tightly confined into the standing wave of the vertical ODT, and the

horizontal ODT can be removed completely. Finally, the retro-reflected mirror that is situated

in top of a air-bearing stage is moved, and the atoms are transported to the surface of the SIL.

When the atoms are too close to the surface, absorption images such as in Fig. 4.17 cannot

be used to observe the atoms due to the scatterings by the edge of the surface of the SIL.

To observe atoms near the surface, a different absorption imaging approach was used. This

system was schematized in Fig. 4.25. The procedure consists in using a probe beam that is

incident to the center of the SIL by a shallow angle. As the probe beam reflects into the surface

of the SIL, the surface acts as a mirror, resulting in two symmetrical absorption images of the

atoms.

The distance between the atoms and the surface of the SIL d is related to the distance D

between the center of the two symmetrical images by

d =M
D

2cosθ
(4.9)

where M is the magnification ratio and θ is the incidence angle of the probe beam. The

absorption images during transport using this imaging method are shown in Fig. 4.26. Af-

ter the vertical transport, 1.0× 106 atoms at a temperature of 2µK were obtained. The final

distance between the atoms and the surface was of 20µm.
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(c) By moving the retro-reflecting mirror, the atoms are trans-
ported to the surface of the SIL.

Figure 4.24: Vertical transport of atoms using an optical conveyor belt.
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Figure 4.25: Absorption imaging system using the surface of the SIL as a mirror. The probe
beam is reflected by the surface of the SIL, generating two symmetrical images of the atomic
cloud. The incindence angle θ and the distance D between the two images can be used to
precisely calculate the distance d from the atoms to the surface of the SIL.
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Figure 4.26: Absorption images of atoms during transport. In each image the air-bearing stage
moves by 10µm along the vertical ODT propagating axis.
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4.6 Optical accordion

Observation of atoms by a high resolution microscope system requires that atoms remain

confined in a pancake-shaped region which is thinner than the depth of field of the objective

lens. In previous experiments with rubidium atoms using a solid immersion lens, a thin layer

of atoms was prepared by compressing an atomic cloud between the gradient potential of a

magnetic field and a repulsive potential created by a blue-shifted evanescent wave [95]. In

the case of ytterbium atoms having a very small magnetic moment, magnetic fields cannot

be used to trap the atoms.

glass cell

SIL

Acco
rdion

beam

Figure 4.27: The optical accordion method. An accordion beam reflected into the surface of
the SIL creates a standing wave which spacing can be manipulated by changing the angle of
incidence.

To compress ytterbium atoms into a thin layer, an all-optical approach is mandatory. One

idea is to compress the atoms using an “optical accordion”. An optical accordion is an optical

lattice with manipulable spacing. The first realization of an optical accordion used a lens to

focus two parallel beams [96]. When the two beams cross at the focal point, an optical lattice

with spacing that depends on the separation of the two beams and the focal length of the lens

is created. The spacing of this optical lattice was manipulated by changing the separation

of the two beams. This method, however, cannot be applied directly to this experiment as

the thin layer of atoms should be positioned directly under the surface of the SIL where the

optical access is limited. Another disadvantage of using this method here is that the position

of the standing wave is determined by the relative phase of the two beams which is normally

unstable due to fluctuations in the surrounding air temperature and density.

Here, a novel method to create an optical accordion near the surface of the solid immer-

sion lens is presented. As shown in Fig. 4.27, an optical accordion can be created when an

incident beam (accordion beam) is reflected into the surface of the SIL. As the incident beam

and reflected beam interfere, an standing wave is produced with a spacing that only depends

on the incidence angle of the accordion beam. The lattice spacing az can be manipulated by
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changing the incidence angle, related by the equation

az =
λ

2 sinθacc
. (4.10)

Th optical accordion created by surface reflection have two important advantages over

the two-beams approach. First, as the relative phase between the incident and reflected beam

is determined by the boundary condition of the surface, the position of the lattice is always

“locked” respect to the surface. This ensures a stable trap that is useful when using a high

resolution microscope system that have very limited depth of field. Second, as the standing

wave is created by a single beam and its reflection, only half of the power is required compared

to that of the two-beam approach.

accordion beam

lens atoms

atoms

Figure 4.28: Potential of the accordion beam during loading and compression. The potential
plot was calculated for a single accordion beam with a power of 1 W.

After the vertical transport, atoms are located 20µm away from the surface. By introduc-

ing the accordion beam at a initial angle of θacc = 0.7, all the atoms can be loaded into the

first layer of the standing wave, as shown in Fig. 4.28. The intensity of the accordion poten-

tial is then decreased to realize evaporative cooling and create a Bose-Einstein condensate.

Finally, the accordion beam incidence angle is increased to compress the condensate into a

thin layer.

4.6.1 System for changing the accordion angle

The apparatus used to change the incident angle of the accordion beam consists of a lens

(accordion lens) and a moving mirror, as shown in Fig. 4.29. The focal point of the lens is
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Figure 4.29: System used to change the angle of incidence of the accordion beam. When the
mirror moves, the accordion beam displaces laterally. The accordion lens focal point is set to
the center of the SIL, resulting in a change in the angle of incidence.

aligned to the center of the SIL. When the mirror moves the beam displaces laterally, result-

ing in a change of incidence angle. The accordion lens is tilted by −6◦ respect to the z axis.

The mirror is placed on top of a air-bearing mechanical stage to avoid mechanical vibrations

(Aerotech ABL10050, see Fig. 4.30). As the mechanical stage moves a maximum distance of

50 mm, the accordion angle can be changed from θacc = 0◦ to 15◦.

50mm air stage

Accordion beam
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Figure 4.30: Photo of the accordion optical setup schematized in Fig. 4.29

The photo of the optical setup used in the experiment is shown in Fig. 4.30. The moving

mirror placed in top of the air-bearing stage is a 1′′ mirror, while the fixed one is a 2′′ by 3′′

elliptical mirror. Both mirrors are tilted by 45◦ respect to the z axis, resulting in a z displace-

ment of the accordion beam when the stage moves. Note that only one air-bearing stage is

used to move the mirrors of two different accordion beams.
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4.6.2 Optical system

The accordion beam is derived from a fiber amplifier (ALS-IR-1SP-SF) with 15 W of output

power. It is seeded by a 50 mW laser generated by a external-cavity laser diode (ECLD) using

a Toptica fabry-perot laser-diode chip (LD-1080-0300-1). The optical system after the output

of the fiber amplifier is schematized in Fig. 4.31. Although the fiber amplifier includes an out-

put isolator in the laser head, an extra isolator was used to protect the fiber amplifier against

strong reflections such as the retro-reflected accordion beam. A transmission grating is used

to remove the amplified stimulated emissions of the laser amplifier, as it will be explained in

detail in the next chapter. The 1st index refracted beam is then divided into two beams that

form each of the accordion beams. The amplitude and frequency of each accordion beam is

controlled by acousto-optical modulators (AOM).

After compression, all the atoms are located into a thin layer close to the surface of the SIL.

To maximize the surface of the optical trap and at the same time maintain its potential deep

enough, the cross section of the accordion beam at the waist was selected to be an ellipse with

a waist of 27µm and 41µm along the vertical (z ) and horizontal (x , y ) directions, respectively.

The beam profile of the accordion beam before inciding the accordion lens have a beam

diameter of 25 mm and 40 mm (see Fig. 4.32) in the vertical and horizontal directions, respec-

tively. To create such a beam shape, two pairs of beam shaping lenses and one anamorphic

prism were utilized.

4.6.3 Accordion lens design

As the accordion angle is changed from shallow angles (θacc ≈ 1◦) during loading to steep

angles during compression (θacc ≈ 12◦), the beam is vertically displaced by tens of millimeters

by the moving mirror. The optical accordion technique requires that every displaced beam

always focus into the center of the SIL. For this condition to be satisfied it is important to

ensure that spherical aberrations of the accordion lens are kept to a minimum. The optical

aberrations where simulated using a lens design software (Zemax) for two different types of

commercially available lenses, as shown in Fig. 4.33.

The simulation includes the aberration generated by the glass cell, that have a thickness of

3 mm and index of refraction of 1.45. As the accordion lens is tilted by−6◦ respect to the glass

cell, the glass cell in the simulation was tilted by 6◦ respect to the lens. Figure 4.33 shows the

simulation result for two different lenses, a spherical (Thorlabs LA1002-C) and an aspherical

lens (Thorlabs AL75150-C). The ray fan plot shown in the figure displays how much the beam

moves on the screen when the incident beam displaces vertically (transverse ray aberration).

Note the striking difference between the aberration of the two lenses, even when the vertical

scale in the aspherical lens plot is one order of magnitude smaller. The aspherical lens per-
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Figure 4.31: Laser system for the accordion beams.

forms even better when the glass cell is not present, meaning that the spherical aberration

here is limited mainly by the glass cell. For the experiments, the Thorlabs AL75150-C aspher-

ical lens was selected. Although it is possible to correct the glass cell aberration by using a

custom ordered aspheric lens, the commercially available lens selected here was sufficient to

successfully compress the atoms up to θacc = 12◦. For the final fluorescence imaging experi-

ments, an angle of incidence of only θacc = 6◦ was used. Consequently, the system designed

here have a large design margin sufficient for the experiments.
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Figure 4.32: Cross section of the accordion beam before inciding the accordion lens. The
vertical and horizontal axes represent the z and x , y directions, respectively.
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Figure 4.33: Spherical aberration simulation using the software Zemax. Two different lenses
are compared.

4.6.4 Removal of amplified spontaneous emission

The ytterbium-doped fiber amplifier used as light source for the accordion beam have the

disadvantage inherent to all the fiber amplifiers, which is the production of amplified spon-

taneous emission (ASE). One of the problems of using this source here is that the accordion

beam wavelength was selected to be near resonant to the 1P1↔ 1S0 at 1077 nm in order to

create the deep potential in the 1P1 state required by the fluorescence imaging experiment.

If the ASE at the transition wavelength is strong enough to excite the atom into the (6s7s)1S0,
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the lifetime of the atom during the imaging process can be considerably reduced. First, an

optical spectrum analyzer was used to measure the ASE of the laser system for a pump light

at 1081 nm, as shown in Fig. 4.34. In the figure is also shown the spectrum after adding a

long-pass filter (Semrock BLP01-1064) and a transmission grating (Ibsen photonics FSTG-

PCG-1250-10XX-986) directly before the fiber coupling device.

Figure 4.34: Spectrum of the fiber amplifier output. The input power is 60 mW and the resolu-
tion was set to 0.1 nm. The plot at right shows a detailed measurement nearby the resonance
wavelength (1077 nm). Note that the baseline at −80 dBm is the detection limit of the instru-
ment.

The maximum allowed ASE (laser power at the resonance wavelength) for the experiment

can be calculated with the formula

PASE =
1

2
Is s0w̄ 2

0π= 0.5 pW (4.11)

where Is = 0.3 mW/cm2 is the saturation intensity of the 1P1↔ 1S0 transition, s0 = I /Is = 10−4

is the ratio of the light intensity I to the saturation intensity, and w̄0 is the average radius of the

beam waist. Note that s0 = 10−4 here is the inverse of the number of photons required for the

fluorescence imaging. In terms of power spectral density (PSD), this value can be rewritten

as :

δPASE(ω) = PASE
Rω
Γ
=−53 dBm/nm (4.12)

where Rω is the resolution in terms of angular frequency (0.1 nm represents roughly 2π ×
25 GHz), and Γ/2π= 3.0 MHz is the linewidth of the transition. Looking back to the plot at Fig.

4.34, the PSD of the ASE at the resonance wavelength was −45 dBm/nm for an input power

of 60 mW. For the lattice power used in the experiment during the fluorescence imaging, the

PSD increases by a factor of 25 dB to−20 dBm/nm, which is 33 dB stronger than the estimated

maximum δPASE.
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To reduce the effects of the ASE a transmission grating (Ibsen photonics FSTG-PCG-1250-

10XX-986) was introduced directly after the output of the laser amplifier (see Fig. 4.31). The

measurement using the optical spectrum analyzer shows that the ASE is reduced by at least

−25 dB at the resonance wavelength (see in Fig. 4.34).

The filtering capability of a transmission grating can be numerically estimated. The diffrac-

tion angle θm of the ray with index m in the case of a transmission grating can be calculated

using the formula

d (sinθm − sinθi ) =mλ (4.13)

where d = 800 nm is the grating period, θi is the angle of incidence, and λ is the wavelength

of the input beam. For the experiment m =−1 was used, resulting in

sinθ−1 = sinθi − λd . (4.14)

The dispersion of the grating results from the derivative of the previous equation,

∂ θ−1

∂ λ
=− 1

d cosθ−1
=−0.098◦/nm (4.15)

for λ= 1081 nm and θi = 41.7◦ (the angle of incidence according to the specification sheet).

To calculate how much of a dispersed beam couples into a fiber, the idea is to calculate

the power coupling coefficient of two Gaussian beamsψa andψb at a plane S [97], as

Ka b =

����∫∫ ψaψb d S

����2 . (4.16)

In the case of two Gaussian beams with the same beam waist w0 tilted by an angle θ respect

to each other, Eq. 4.16 reduces to

Ka b = exp

�
−
�
πθw0

λ

�2�
. (4.17)

Finally, replacing Eq. 4.15 into the transmission grating Eq. 4.17, the fiber coupling efficiency

T (λd ) = exp

�
−
�
π(λ−λd )w0

d cosθ−1λ

�2�
. (4.18)

of a dispersed beam with wavelength λd is obtained. Figure 4.35 shows the transmission for

λ = 1081nm and w0 = 500µm. For a change of wavelength of 1 nm, the transmission of the

fiber coupling is reduced by−30dB. Figure 4.34 shows that for a change of wavelength of 1 nm

the PSD is reduced by roughly−15 dB by using a transmission grating, which is much less than

the expected theoretical reduction. It is possible to think that detection limit of the spectrum

analyzer limits the peak width of the carrier signal. Two facts reinforced this hypothesis: 1) a
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Figure 4.35: Transmission of the grating including fiber coupling, for a central wavelength of
λ= 1081 nm.

measure of the spectrum of a single-mode Ti:S output spectrum, which should be extremelly

sharp, resulted in a similar profile. 2) When a long pass filter was used in combination to

the transmission grating, the transmission profile remained unchanged. If the long pass filter

reduces the ASE at 1077 nm by 20dB and the grating reduces it by 25dB, using a combination of

both should result in a reduction of 45dB. Experimental results, however, showed no changes

in the spectrum when the long pass filter was added after the transmission grating.

The scattering in the optics before and including the grating also limit the extinction ratio

of the ASE. Supposing that the optical elements are D = 1 m away from the fiber coupling, and

only the cross section equivalent to the beam surface (πw 2
0 ) couples into the fiber. then only

πw 2
0

4πD 2 =−72 dB of the scattered light will be transmitted. If only 10% of the total power scatters

in the optical elements, then at least−82 dB of the ASE will always couple into the fiber for all

the wavelengths.

In conclusion, the ASE should be reduced by at least 33dB for the experiments when the

number of photons required is∼ 10000. The optical spectrum analyzer used to test the grating

showed a reduction of at least 25dB, which is possibly limited by the detection performance of

the apparatus. In theory, the transmission grating would reduce the ASE intensity by at least

80dB which is five order of magnitude higher than the required for the experiment. It should
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be noted that our team previously tested the performance of reflective gratings for linewidth

filtering in [98], showing good agreement between the theory and the experimental results.

One way to ensure that the ASE is completely removed would be to use ultra-steep band-pass

or long-pass filters, which are very costly but guarantee a reduction of at least 60dB.

4.6.5 Alignment of the accordion lens

As explained in a previous section, in order to compress the atoms using the optical accor-

dion system, the focus of the accordion lens should be precisely positioned on the center of

the SIL. The alignment of the accordion lens was realized using three axis stage where the 3”

aspherical lens holder was mounted, as shown in Fig. 4.36.

Figure 4.36: The accordion lens mounted in a three axis stage.

For a precise alignment it is convenient to observe the atoms from two different angles.

In the case of this experiment, the reflected absorption imaging technique was used to ob-

serve the atoms from one side, while the fluorescence resultant from absorption imaging was

captured by the microscope system using an objective lens with small magnification (Mit-

sutoyo M Plan Apo SL 20X). Initially, atoms after vertical transport were observed as shown

in Fig. 4.37. To test whether the accordion beam intersects the atoms, the accordion beam

is activated while the vertical ODT is suddenly cut, and the atoms are observed after 3 ms of

time-of-flight. If the accordion beam is not correctly aligned to the center of the SIL, the atoms

fall due to gravity on the z direction. On the other hand, in the case of a correct alignment

the atoms are trapped by the accordion potential and expand along the y (accordion beam

propagation) axis (bottom images of Fig. 4.37). If the accordion beam is not correctly aligned,
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the position of accordion lens in the x and z direction should be modified until the atoms are

trap.

Top View (fluorescence imaging)
After vertical transport

Top View (fluorescence imaging)
Accordion ON + 3ms ToF

Lateral View (absorption imaging)
After vertical transport

Lateral View (absorption imaging)
Accordion ON + 3ms ToF

Figure 4.37: Absorption and fluorescence imaging of atoms used for the alignment of the ac-
cordion lens.

Note that there are three degrees of freedom on the position of the accordion lens, from

which only two can be determined using the alignment mentioned before; it is possible to

cross the atoms with the accordion beam even when the focal plane of the lens is not posi-

tioned at the center of the SIL. The third degree of freedom is determined when the accor-

dion beam crosses the atoms for two different angle of incidence. The alignment procedure

is as follows: suppose that for an accordion angle θacc = θ1 the correct position of the lens

is (x1, y , z1) and for a different angle θacc = θ2 the correct position is (x2, y , z2). The goal is to

change the position y such that both ∆x = x 1− x 2 and ∆z = z 1− z 2 converges to zero. In

other words, the accordion lens focal plane crosses the center of the SIL if and only if for two

different angles θacc the accordion beam traps the atoms. This procedure can be realized in a

systematic way ensuring a precise alignment of the accordion lens.

4.6.6 Loading of atoms into the optical accordion

The experiment procedure to load the atoms into the accordion potential consists in gradu-

ally reducing the vertical ODT retro-reflected intensity and at the same time increasing the

intensity of the accordion beam (Fig. 4.38b). After loading the atoms, a BEC is created using

evaporative cooling by reducing the intensity of the accordion beams (Fig. 4.38c). As seen in

Fig. 4.31 there are two different orthogonal accordion beams in the x and y directions. The
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a) Vertical ODT b) Vertical ODT + Accordion c) BEC

Figure 4.38: Absorption imaging of atoms. a) After vertical transport. b) After loading the
atoms into the first layer of the optical accordion. c) After creating a BEC.

reason for using two accordion beams is that each of the beams can be later retro-reflected to

form a two-dimensional optical lattice.

4.6.7 Bose-Einstein condensate: Single accordion

Accordion

loading
Evaporative cooling

Vertical ODT

Standing Wave

Vertical ODT

Power

Accordion 1 (or 2)

Power

100ms 100ms 900ms

Figure 4.39: Time sequence for creating a BEC with a crossed-dipole trap using a single ac-
cordion beam.

Although there are two orthogonal accordion beams, it is possible to create a BEC using

a single accordion. For alignment and optimization purposes, it is convenient to first cre-

ate the BEC using a crossed trap between the vertical ODT and each of the accordion beams

separately. Figure 4.40 shows the time sequence used to load the transported atoms into the

first layer of the optical accordion and create a BEC. First, the intensity of the retro-reflected

vertical ODT is reduced in order to transform the optical conveyor belt back into a traveling

wave. At the same time, the power of the accordion beam is increased to 2.1 W, and atoms

are loaded into the first layer of the accordion potential. To create a BEC, the intensity of the

vertical ODT is maintained constant while the intensity of the accordion beam is reduced to

500 mW in an quasi-exponential way. Figure 4.40 shows the time-of-flight of the BEC for each

of the accordion beams. Due to the strong potential produced by the vertical ODT beam, the

BEC expands anisotropically in a direction almost perpendicular to the vertical ODT propa-
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gation axis.

Vertical ODT + Accordion 1 Vertical ODT + Accordion 2

0 ms 7 ms 0 ms 7 ms

Figure 4.40: Time-of-flight of the BEC up to 7 ms for each of the two different accordion
beams.

The number of atoms as a function of the holding time after creating the BEC is shown

in Fig. 4.41. The results were fitted using a three-body and one-body loss model for a three-

dimensional BEC [99]:
d N

d t
=−γN 9/5−αN (4.19)

whose solution is given by:

N (t ) =
h�

N0
−4/5+

γ

α

�
e

4
5αt − γ

α

i−5/4
(4.20)

resulting in an initial three-body loss ratio
�
γN 4/5
�−1
= 1.4 s and τ= 23 s.

4.6.8 Bose-Einstein condensate: Double accordion

After optimizing each of the accordion beams to create a BEC, it is possible to create a 3-

beam-crossed ODT formed by the two combined accordion beams (double accordion) and

the vertical ODT. In this case, the time sequence to create the BEC consists in first reducing

the power of the optical accordions and later removing the vertical ODT completely, as shown

in Fig. 4.42. This procedure resembles an evaporative cooling technique using a dimple trap

[29]. Figure 4.43 shows the time-of-flight of the BEC in the double accordion case. The final

power of the accordion beams is 300 mW.

Figure 4.43 shows the time-of-flight of the BEC. In contrast with the time-of-flight images
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Figure 4.41: Lifetime of atoms after creating the BEC.

Accordion

loading
Evaporative cooling

Vertical ODT

Standing Wave

Vertical ODT

Power

Accordion 1+2

Power

100ms 500ms 500ms

Figure 4.42: Time sequence for creating a BEC with a crossed-dipole trap using a double ac-
cordion beam.

of the BEC when only one accordion beam was used, the absence of the vertical ODT here

results in a symmetrical trap in the x and y directions. As the trap frequency in the z direction

is higher, the cloud expands anisotropically where the z direction is slightly elongated.

The number of atoms as a function of the holding time after creating the BEC is shown

in Fig. 4.44. The results were fitted using a three-body and one-body loss model, resulting in�
γN 4/5
�−1
= 69 s and τ= 71 s.

4.6.9 Compression of atoms

After creating the BEC, atoms are compressed by moving the air-stage where the moving mir-

rors are situated (see Fig. 4.29). The absorption images after compression are shown in Fig.

4.45.

Note that for steep angle of incidences the atoms move very close to the surface and the

mirrored absorption images become superposed. In the case of Fig. 4.45, the air-stage moves
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Vertical ODT + Accordion  1 + Accordion 2

0 ms 7 ms

Figure 4.43: Absorption images of the atoms for the double accordion setup. Time-of-flights
are between 0 ms and 7 ms.

Figure 4.44: Lifetime of atoms after creating the BEC in the double accordion setup.
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Figure 4.45: Absorption images of the atoms after compression. Time-of-flights are between
0 ms and 7 ms.

Figure 4.46: Lifetime of atoms after compression. The solid line is a fitting using a two-body
loss model.

27.3 mm with a constant acceleration and deceleration of 1m/s2, requiring 330 ms. The final

angle after compression was θacc = 11◦, resulting in a strong confinement in the z axis which
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produces a highly anisotropic density profile after free expansion. The number of atoms as

a function of the holding time after compressing the atoms is shown in Fig. 4.46. The results

was fitted using a two-body losses curve resulting in an initial loss rate of
�
β 〈n〉r �−1 ≈ 300 ms.

A three-body model did not fit properly with the results. The three-body losses rate was es-

timated theoretically as
�K3

6 〈n 2〉r �−1
= 260 ms, which is comparable with the initial loss rate

obtained in the fitting. This means that the lifetime profile is probably determined by a com-

bination of two-body and three-body losses, which cannot be solved analytically.

Note that the final experiments were realized at θacc = 6◦. This angle is sufficient to pro-

duce a condensate gas in the 2D regime and it provides deeper potentials as the reflectivity of

the SIL decreases as θacc increases. The lifetime at this angle resulted in ≈ 2 sec.

4.6.10 Density profile of the BEC

The integrated density profile in the horizontal direction of the BEC before compression is

shown in Fig. 4.47 for three different stages of evaporative cooling and 7 ms of time-of-flight.

When the accordion beams power is 170 mW the atomic cloud is a mixture of a thermal gas

and a condensate fraction resulting in a bimodal density profile (see Fig. 4.47(a)). The ther-

mal cloud have a Gaussian profile from which a temperature of 180 nK was estimated. The

condensate part of the cloud represent 20% of the total atoms and have a Thomas-Fermi

(parabolic) distribution. After further reducing the accordion beams power to 120 mW the

evaporative cooling process finishes resulting in a pure BEC with not discernible thermal

component (see Fig. 4.47(c)). The estimated critical temperature is Tc ≈ 200 nK.

After compressing the atoms to θacc = 6◦ the trap frequency in the vertical(z ) direction is

increased by a factor of∼10 (cf. Appendix A.2), while the trap frequencies in the horizontal(x ,y )

directions only increase by a factor of ∼2. The potential depth is also increased by a factor

of ∼8. Consequently, the resultant integrated density profile in the horizontal direction (see

Fig. 4.48) have a very similar shape to the density profile before compression. The thermal

component on the atom reappears (see Fig. 4.48(top)) if the power of the accordion beams

is maintained constant during compression, possible due to an increment of three-body col-

lisions leading to heating. The thermal component disappear completely after the power of

the accordion beam is further reduced.

The vertical integrated density profile of the compressed BEC is shown in Fig. 4.49. Notice

that the density profile does not match a Thomas-Fermi distribution but instead a Gaussian

one. This condition arises when the Thomas-Fermi approximation is no longer valid and the

mean field energy Emfe becomes smaller or comparable to the vibrational energy separation

ħhωz , as:

Emfe =
4πħh 2a n

m
< ħhωz (4.21)
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(a) Condensate fraction ∼20%. T = 180nK. Pacc = 170 mW.

(b) Condensate fraction ∼40%. T = 140nK. Pacc = 140 mW.

(c) Condensate fraction ∼100%. Pacc = 120 mW.

Figure 4.47: Horizontal integrated density profile of the BEC before compression, for three
different potential depths. The time-of-flight is 7 ms.
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BEC + thermal (250nK)

Pure BEC

Figure 4.48: Horizontal integrated density profile of the BEC after compression to θacc = 6◦ for
two different potential depths. The time-of-flight is 7 ms.

where a is the scattering length of ytterbium (see Table 2.2) and n is the peak number density

of atoms. Eq. 4.21 can be rewritten as:

N <

√√ 32ħh
225ma 2

√√√ ω3
z

ω4
x y
≈ 10000 (4.22)

whereωz /2π= 1.7 kHz andωx y /2π= 0.06kHz was used for the calculations.

For the number of atoms after compression, the mean field energy is comparable with the

vibrational energy separation ħhωz resulting in a Gaussian profile in the z direction. For the

quantum gas microscope experiments, the number of atoms is usually reduced to ∼ 1000 or

less by further reducing the potential depth. In that case, the condition of Eq. 4.22 is satisfied

and the condensate behaves as a 2D quantum gas.

4.6.11 Stability of the system

The short-term stability of the system is shown in Fig. 4.50. Considering the complexity of

the transport and compression process, the number of atoms in the compressed condensate

is very stable. Even for compression up to θacc = 10◦ the fluctuation in the number of atoms
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Figure 4.49: Integrated density profile along the horizontal and vertical axis. The horizontal
profile match a Thomas-Fermi distribution while the vertical distribution is Gaussian.

is less than 10%. It is not clear what determines the stability of the system at this point.
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(a) Single accordion beam (x axis) (b) Single accordion beam (y axis)

(c) Double accordion beam (x + y axis)
(d) Double accordion beam after compression to
θacc = 10◦

Figure 4.50: Stability of the system during 60∼ 80 shots.



Chapter 5

Experiment: Fluorescence imaging

In the previous chapter a BEC of atoms was compressed into a thin pancaked-shape conden-

sate near the surface of the SIL using the optical accordion technique. Such an atomic cloud

was a required condition for observing atoms using a high numerical aperture microscope

system as the atoms need to be confined in a region thinner than the depth of field of the

objective lens. This chapter centers in the experimental setup used to load the compressed

atoms into a two-dimensional optical lattice and the imaging process to realize fluorescence

imaging of the atoms with single-site resolution.
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Figure 5.1: High numerical aperture system used for observing atoms fluorescence.

The experimental apparatus used to trap and image atoms in a two-dimensional optical

lattice is shown in Fig. 5.1. The two-dimensional optical lattice is created by retro-reflection of

the optical accordion beams, as it will be explained in detail in Sec. 5.1. Section 5.3 focuses on

the imaging process using a deep potential in the excited state. This is followed by an analysis

85
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of the resolution of the system in Sec. 5.4.1. Finally, the lattice reconstruction algorithm and

the lifetime of the system are discussed in sections 5.4.2 and 5.4.3.

5.1 Loading of atoms into the 2D optical lattice

Atoms trapped in the first layer of the accordion lattice are loaded into the two-dimensional

optical lattice by retro-reflecting the optical accordions. The retro-reflection system shown

in Fig. 5.1 is comprised by a mechanical shutter, two polarized beam splitters and a half-

wave plate mounted on a stepping motor with the same properties as the one explained in

Sec. 4.5.5. After opening the mechanical shutter, the stepping motor rotates 400 micro-steps

(equivalent to 45◦) with a constant acceleration and deceleration of 2× 105steps/s2. As two

polarized beam splitters are used, the retro-reflected intensity is proportional to sin4( step
400

π
2 ).

The potential depth during loading can be roughly estimated with the equation:

V (x , y , z ) =Vacc(x , y , z )
��

1+R −2
p

R
�
+4
p

R cos2(kx x )+4
p

R cos2(ky y )
�

(5.1)

where R (t ) is the intensity of the retro-reflected beam divided by the accordion beam inten-

sity, Vacc(x , y , z ) is the accordion potential, and kx = ky = 2πcosθacc/λlat are the wavenum-

bers in the x and y direction, respectively. For an optical accordion with an incident angle of

θacc = 6◦, the resultant lattice spacing is of 544nm. Figure 5.2 shows the transmittance of the

different optical elements used for retro-reflection and the reflectance of the surface of the

SIL for an incident angle of θacc = 6◦.
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Figure 5.2: Optical losses of the optical accordion and retro-reflection system.

Considering the losses of all these optical elements, only 50% of the total power can be

retro-reflected. The reflected intensity can be written as:

R = 0.50× cos4
�

step(t )
400

π

2

�
. (5.2)

Figure 5.3 shows the variation in the potential relative to the accordion potential V (0, 0, z )/Vacc(0, 0, z )



CHAPTER 5. EXPERIMENT: FLUORESCENCE IMAGING 87

during loading time. The curves represent the relative offset 1+R−2
p

R and the relative lattice

depth 4
p

R .

Figure 5.3: Change in the offset potential and lattice depth during loading. The potential units
are relative to the initial accordion potential.

Initially, all the atoms are located in the first layer of the optical accordion at z0 = 2.6µm.

Using Eq. 5.1, the lattice depth is

V0 = 4
p

R Vacc(0, 0, z0) = 2.8Vacc(0, 0, z0) (5.3)

nearby the central region of the trap. After loading, the estimated depth was V0/kB = 1.9µK

or V0/Er = 40, and the trap frequencies were (ωx ,ωy ,ωz )/2π= (12, 12,1.8)kHz.

5.2 Laser system

The laser system used to derive the excitation beam is shown in Fig. 5.4. A Ti:sapphire laser

was frequency-doubled using a bow-tie cavity and a BiBO non-linear crystal. The output of

the cavity was fed into an acousto-optical modulator (AOM) in the double-pass configuration,

that serves as optical shutter and frequency shifter. The output of the AOM was coupled into

an optical fiber, obtaining 30 mW of power at the fiber output. Due to the high output power

of the excitation light and the limited extinction ratio of the AOM (−60 dB in the best case), it

is important to use a mechanical shutter to avoid heating during transport and compression.

The exposure pulse used for imaging is generated immediately after the mechanical shutter

opens, which is detected by a photo-detector placed after the shutter. The frequency of the

Ti:S laser was locked using a frequency-offset locking system, which consists in using the beat-

note produced by the interference of the excitation and Zeeman slowing laser system as a

feed-back signal.
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Figure 5.4: Laser system for the excitation beam

5.3 Imaging of atoms

The strategy to obtain a sufficient number of atoms, previously discussed in Sec. 3.4, consists

in creating a deep potential in the excited state and using a resonant excitation beam to couple

the ground state with the excited one. The resultant deep effective potential is capable of

containing the atoms that are heated during fluorescence imaging.

399 nm

1077 nm

excitation

Optical lattice

Optical lattice

Figure 5.5: Deep potential method utilized during fluorescence imaging.

The imaging process starts by increasing the power of the accordion (lattice) beams to

Plat = 2 W in 10ms. For this lattice power and a lattice detuning of ∆lat/2π = 1.0THz, the

resultant lattice depth in the ground and excited state are Ug /kB = 280µK and Ue /kB = 62 mK,

respectively. In the case of an atom experiencing an average lattice depth U0 = (U e +U g )/2,

the corresponding trap frequencies are (ωx y ,ωz )/2π= (1.6,0.23)MHz.

The excitation light, which is aligned on the same optical axis as the optical accordion, is

inserted from the retro-reflection side using a longpass dichroic mirror (Thorlabs DML650L).

The beam waist was set to 100µm, corresponding to a peak intensity of 95 W/cm2 or 1600Is ,
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where Is is the saturation intensity of the 1S0-1P1 transition. The excitation beam is resonant

with the shifted transition, which determines∆0 = (Ue −Ug )/kB .
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Figure 5.6: Direction and polarization of each of the accordion beams and excitation
beamãĂĂduring fluorescence imaging, as seen from the CCD camera.

Figure 5.6 shows the direction and polarization of each of the accordion beams and the

excitation beam as seen from the microscope system. Note that the excitation light is shinned

from only one direction and it is not retro-reflected, resulting in a net radiative force. Details

and a quantitative estimation of this force were explained in detail in Sec. 3.5.1. Note also

that as the optical lattice beams are symmetrical in each direction the excitation beam could

be in principle either inserted from either the x direction or the y direction (or both at the

same time). Experimentally, however, there was a noticeable degradation in the fluorescence

intensity when the excitation beam was inserted from the y direction. It was later discovered

that the small frequency shift used to avoid interference of the two accordion beams broke

the apparent symmetry of the system uniquely determining a “good direction” for excitation.

Details of this asymmetry are studied in Appendix 5.5.

A single-shot image of the Yb atoms trapped in a two-dimensional optical lattice after

100µs of exposure time is shown in Fig. 5.7. The solid angle of the imaging system implies

that only 21% of the total photons can be collected by the objective lens, which results in a

total photon collection efficiency of ∼5% for the microscope system. This value includes the

transmittance of the SIL (87%), the objective lens (56%) and the low-pass filters (92%), and

also the quantum efficiency of the CCD camera (∼0.5 e −/photon at 399 nm).

An average of 100 photons per atom was collected (∼2000 photons emitted) by the CCD
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Figure 5.7: Single-shot image of the Yb atoms trapped in a two-dimensional optical lattice
after 100µs of exposure time

camera in the 100µs of exposure time. This number of photons is one order of magnitude

smaller than the expected from the simulations. The definition of the image is, however, no-

toriously sharper than the expected. Two factors contributed to the increase in definition: 1)

The resolution of this microscope system is less than half compared with that of previous ex-

periments with rubidium (cf. Sec. 5.4.1 ). This increases the fluorescence density by a factor

of ∼4. 2) The extremely short exposure times used in this experiment (5 order of magnitude

smaller than the rubidium experiments) result in a dramatic reduction in the background

dark noise (cf. Fig. 5.17). Both effects lead to an increment in the S/N ratio of the obtained

image.

5.4 Analysis of the microscope performance

This section is focused in studying the performance of the microscope, which includes an

analysis of resolution, lifetime and fidelity of the system. For this purpose of study it is con-

venient to use very sparsely populated lattices (filling < 0.05) in order to reduce the effects

of photo-association (PA) and hopping. Photo-association effects in multiply occupied sites

result in the formation of molecules that lead to the loss of atoms in times of the order of a

few to tens of microseconds. As the short imaging times in the system are comparable with

these times, PA losses modify the shape of the histogram and affect the lifetime estimation.
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5.4.1 Microscope resolution

The point spread function (PSF) is obtained by averaging the fluorescence images of different

isolated sites, as shown in Fig. 5.8. In total, 277 individual sites over 32 different images were

used for the average, resulting in the PSF in Fig.5.9.

Selected sites

Figure 5.8: Example of selected isolated sites in a single fluorescence image.

The resolution of the microscope system is obtained by fitting the intensity profile along

each axis using a Gaussian function. The resultant FWHM average resolution was 319(2) and

317(1)nm in the x and y directions, respectively.

FWHM
319(1) nm

FWHM
317(1) nm

300 nm

Figure 5.9: Averaged fluorescence intensity in isolated sites. The PSF along the x and y axis
were fitted using Gaussian functions.

For a microscope system with a NA of 0.81 and an imaging wavelength of λ= 399 nm, the

minimum possible resolution based on the Rayleigh criterion is 0.51λ/NA= 250 nm, which is

only 20% smaller than the obtained average resolution.
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5.4.2 Lattice reconstruction

Original image After deconvolution

Figure 5.10: Deconvolution of a sparse image using the PSF obtained in Fig. 5.9

The reconstruction of the original distribution of atoms from the fluorescence images is

discussed here. The algorithm used for reconstruction was created with the Mathematica

software, and consists of three steps: 1) Deconvolution, 2) Lattice fitting, and 3) Binning.

1) Deconvolution

Using a Gaussian matrix with the same size that the obtained from the averaged PSF in

Fig. 5.9, the image is deconvoluted using the “TotalVariation” algorithm. The resultant

deconvoluted image for a typical sparse image is shown in Fig. 5.10.

2) Lattice fitting

The direction, spacing and phase of the two-dimensional optical lattice is determined

by maximizing the total fluorescence of each site when only the central 3× 3 pixels of

each site is considered. As this process takes a considerable amount of processing time,

the direction and spacing is obtained from a single image and later fixed for the rest of

the images. Figure 5.11 (c) shows a typical result. The determined lattice directions

where 43.55(2◦ and 135.51(2)◦ for the x and y directions, respectively. The lattice re-

sultant spacing was 6.205(5) pixels, from where the magnification M of the microscope

system can be obtained:

M = 6.205P × 2 cosθlat

λacc
= 148.3 (5.4)

where P = 13µm is the pixel size of the CCD camera. As the refractive index for fused

silica at 399 nm is n = 1.47 and the magnification of the objective lens is 100X, the ex-

pected magnification ratio was 1.47 × 100 = 147, which is very close to the obtained
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value. The effective pixel size in the object plane is P /M ≈ 88 nm.

a) b)

c) d)

Figure 5.11: Reconstructed process for a sparse image and a exposure time of 40µs. a) Original
image. b) Deconvoluted image. c) Lattice fitting. d) Binning and atom distribution detection.

3) Binning

The binning process consists in adding the fluorescence of the central 3×3 pixels of each

site to determine the total atom fluorescence. A site is determined to be occupied if the

total number of photons (in the central 3×3 binned part) is greater than a threshold L .

Figure 5.11 (d) shows the final distribution of atoms for each site, when a threshold of

L = 130 photons is used.

The photons per site distribution is shown in Fig. 5.12 in the case of the single image in

Fig. 5.11 and in the case of 171 images.
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(a) Histogram for the single image shown in Fig. 5.11

(b) Total histogram over 171 images.

Figure 5.12: Histogram of total fluorescence per site. left) Log scale, center) Magnificated
fluorescence peak in linear scale. right) Magnificated background peak in linear scale.

Figure 5.13: Lifetime obtained from histogram by exponential fitting for Plat = 1.1 W and
∆lat/2π= 1.0 THz. The exposure time was 300µs

5.4.3 Lifetime analysis

During the imaging process, atoms absorb the excitation light and are heated up due to ran-

dom light scattering. After a number of scatterings, the atom escapes from the site and is lost.
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The lifetime of the atoms was determined using the histogram of the total intensity in each

site. Assuming that the number of photons emitted by each atom is proportional to the life-

time, and the number of atoms decreases exponentially, the shape of the histogram is also

expected to decay exponentially for exposure times much longer than the lifetime. Figure

5.13 shows a typical histogram result for Plat = 1.1 W and ∆lat/2π = 1.0 THz, where an expo-

sure time of 300µs was used.

For the analysis in this section, the lifetime of atoms will be expressed always in photons.

Although using units of time for the lifetime is the natural physical choice, the lifetime in

seconds is not a good quantity for the analysis here. As the emission rate depends on the po-

tential depth and saturation intensity, a longer lifetime in seconds does not necessary mean

that the atom is emitting more photons. Consider for example the case where the the satu-

ration intensity is very low (s0 ≪ 1). As the emission rate is very low, the lifetime in seconds

is expected to be large. However, the number of mean photons emitted will be reduced due

to the low population of atoms in the 1P1 state, which is not beneficial to the “deep potential”

method. Also, the lifetime in seconds cannot be directly measured, as the number of total

emitted photons is measurable but the number of atoms is undetermined. The method to

measure lifetime using the histogram exponential decay, on the other hand, does not depend

on the number of atoms. For a given potential depth and saturation it is possible to esti-

mate the emission rate knowing the lifetime in photons and the histogram of fluorescence

per site. The expected emission rate obtained in the simulations is in the range between 60

to 84 photons/µs. The maximum emission rate 2/Γ ≈ 88 photons/µs.

Figure 5.14: Lifetime dependency on lattice power Plat. The solid curves are fitting using Eq.
3.23.

The lifetime analysis here is essentially the same as the one realized for the simulation

data in Sec. 3.5. The dependence of the lifetime (in photons) n on the lattice power Plat for
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five different lattice detunings ∆lat/2π = 0.4, 0.6, 0.8, 1.0 and 1.2 THz is fitted with the Eq.

3.23. Figure 5.14 shows the measured lifetimes as a function of the lattice power Plat for two

different lattice detunings∆lat/2π= 0.4 THz and∆lat/2π= 1.2 THz.

Figure 5.15: Lattice detuning∆lat/2π dependency of the parameters A and B. The solid curves
are fittings using a power equation.

From the fitting results different parameters A and B are obtained for each lattice detuning

∆lat. These parameters were plot in Fig. 5.15 and fitted using power equations, resulting in:

A =
1480±40

(∆lat/2π)
1.17±0.08 W−1 , B = (9400±1100)(∆lat/2π)

2.21±0.12 W (5.5)

where ∆lat/2π is in the units of THz. Replacing the equations for the parameters A and B

into the Eq. 3.23 and calculating the derivative by ∆lat, the maximum lifetime and optimal

detuning for a given Plat results in:

n (Plat)≈ 1470Plat
0.31 at ∆lat/2π≈ 0.70Plat

0.59 (5.6)

where the units of Plat and ∆lat/2π are in W and THz, respectively. For the maximum lattice

power Plat = 2.1 W currently available in this system, the optimal lifetime is of ∼1850 photons

at ∆lat/2π ≈ 1.1 THz. The estimated photon emission rate is 25 photons/µm corresponding

to a maximum lifetime of 74µS.

Equation 5.6 plot is shown in Fig. 5.16. Upgrading the fiber amplifier system to achieve an

output of Plat = 10W would increase the lifetime to∼3000 photons at∆lat/2π≈ 2.7 THz (λlat ≈
1088 nm). Fortunately, high-power laser sources are readily available for this wavelength.
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Figure 5.16: Maximum obtainable lifetime for a given power Plat and the optimal lattice de-
tuning∆lat/2π.

5.4.4 Fidelity

The fidelity of the quantum gas microscope is determined by three main factors: 1) back-

ground noise, 2) losses and 3) hopping.

In the case of the background signal, the fidelity is reduced when the reconstruction al-

gorithm wrongly evaluates an empty site as a filled one. The probability of making such an

error can be estimated by processing 34 empty images with the reconstruction algorithm and

analyzing the shape of the resultant histogram. Fig. 5.17 shows the total histogram for the

processed images. For a threshold set in 150 photons, only 18 sites of the 9702 total sites re-

sulted in a signal of more than the threshold. This means that there is a < 0.2% probability of

wrongly evaluating a empty site as an occupied one.

The width of the background signal is determined by dark noise, readout noise and light

scattering background. One of the advantages of this microscope system is that the dark noise

is negligibly small due to the very short exposure times. In the case of this system, light scat-

tering of the excitation beam limits the width of the background signal.

The losses can be estimated knowing that the atoms have a lifetime of 1850 photons for a

lattice power of Plat = 2.1 W. If the atom density decay exponentially, then 1−exp(−150/1850)≈
8% of the atoms are lost before emitting 150 photons. The reconstruction algorithm wrongly

determines these filled sites as empty sites.

The usual method to evaluate hopping effects is to take multiple images from the same

lattice and verify whether each atom position have changed or not. In this experimental

setup the lifetime and exposure time are very short and it is technically difficult to utilize

this method. However, hopping effects are greatly reduced because the atoms that escape

from the site and hop to neighboring sites have a high kinetic energy and cannot be cooled by
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Figure 5.17: Histogram as a probability density function of the background signal. A total of
34 empty images were processed.

the excitation beam. Such atoms are expected to hop indefinitely until they are lost, emit-

ting a reduced number of photons in the neighboring sites. As an alternative way to es-

timate hopping effects we measured the intensity correlation function g (2)(R ) = 〈I (r )I (r +
R )〉/〈I (r )2〉 of occupied sites in 200 sparse lattice images. This resulted in correlations of

(1.03(18), 1.03(24),1.03(19)) for inter-atomic distances R = (1,
p

2, 2) × 544 nm. These corre-

lation values indicates that hopping events do not produce enough photons to be counted as

an occupied site.

5.5 Light shift in a 5-level diamond system

The AC Stark shift generated by two orthogonal optical accordion (lattice) beams with orthog-

onal polarizations is studied here (see Fig. 5.6). For the calculations the quantization axis is

set in the y axis. The accordion beam propagating in the x direction have π polarization,

while the accordion beam propagating in the y direction is in the 1p
2
(σ++σ−) polarization.

The ground state 1S0 and the excited state (6s 6p )1S0 are labeled as |1〉 and |5〉, respectively.

The excited state 1P1 have three sublevels labeled as |2〉 = |m ′J =−1〉, |3〉 = |m ′J = 0〉 and |4〉 =



CHAPTER 5. EXPERIMENT: FLUORESCENCE IMAGING 99

Figure 5.18: “Deep potential” as a five energy-level system in diamond shape.

|m ′J =+1〉. The accordion beam propagating in the x direction couples the energy levels |3〉
and |5〉. Correspondingly, the optical accordion propagating in the y direction couples |2〉 and

|4〉with |5〉 (see Fig. 5.18).

Consider the case in Fig. 5.6 where there is only one excitation beam propagating in the

x direction and with π polarization. As the atom is excited into the |3〉 state, the atom expe-

riences a deep potential due to the coupling of the states |3〉 and |5〉. As the optical accordion

beam in the y direction only couples the states |2〉and |4〉with |5〉, the atom will not experience

this potential, and consequently, it will be only trapped along the “deep potential” generated

by the optical accordion in the x direction. If this is the case, the deep potential method would

only apply in one direction when one excitation beam is used.

Two things were noticed and later theoretically understood during the realization of this

experiment: 1) Only one excitation beam is necessary to produce a two-dimensional “deep

potential” and 2) The “deep potential” is not symmetrical with respect to the x and y direc-

tions. There is always a unique “good direction” for excitation that produces brighter and

sharper fluorescence images.

Both of this phenomena can be explained by the theory that follows. Consider the Hamil-

tonian for the unperturbed system H0 and the interaction terms:

H0 = ħhω2 |2〉 〈2|+ħhω3 |3〉 〈3|+ħhω4 |4〉 〈4|+ħhω5 |5〉 〈5|
H25 =−ħhΩy

2

�
e −iωy t + e iωy t
�
(|2〉 〈5|+ |5〉 〈2|)

H35 =−ħhΩx

2

�
e −iωx t + e iωx t
�
(|3〉 〈5|+ |5〉 〈3|)

H45 =−ħhΩy

2

�
e −iωy t + e iωy t
�
(|4〉 〈5|+ |5〉 〈4|)

(5.7)
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which results in a total Hamiltonian given by:

H =H0+H25+H35+H45 = ħh



ω2 0 0 −Ωy

2 e iωy t

0 ω3 0 −Ωx
2 e iωx t

0 0 ω4 −Ωy

2 e iωy t

−Ωy

2 e −iωy t −Ωx
2 e −iωx t −Ωy

2 e −iωy t ω5


. (5.8)

Here the rotating wave approximation, where the terms representing a photon emission

with excitation (e.g. e −iωx t |5〉 〈3|) or a photon absorption with de-excitation (e.g. e iωx t |3〉 〈5|)
are neglected, was used. It is convenient also to introduce the effective Hamiltonian H̃ asso-

ciated with the rotating-frame effective field:

H̃ =U †H U − iħhU † ∂U

∂ t
(5.9)

where the unitary matrix U is defined as:

U =



e iωy t 0 0 0

0 e iωx t 0 0

0 0 e iωy t 0

0 0 0 1


. (5.10)

Equation 5.9 results in:

H̃ = ħh



ω2+ωy 0 0 −Ωy /2

0 ω3+ωx 0 −Ωx /2

0 0 ω4+ωy −Ωy /2

−Ωy /2 −Ωx /2 −Ωy /2 ω5


(5.11)

and knowing thatωe =ω2 =ω3 =ω4,ωy =ω5 −ωe +∆y andωx =ω5 −ωe +∆x , it can be

rewritten to:

H̃ = ħh



∆y 0 0 −Ωy /2

0 ∆x 0 −Ωx /2

0 0 ∆y −Ωy /2

−Ωy /2 −Ωx /2 −Ωy /2 0


+ħh Iω5. (5.12)
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Figure 5.19: Light shift variation in a lattice site for different∆.
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The eigenvalues of the effective Hamiltonian are found by solving

|H̃ −λI |= 0 (5.13)

for different detunings ∆x ,∆y and different Rabi frequencies Ωx ,Ωy . In the case of a two-

dimensional optical lattice where each of the lattice beams have the same power Plat and dif-

ferent detuning∆x ̸=∆y , the parameters are rewritten as:

Ωx =Ωcos(k x )

Ωy =
1p
2
Ωcos(k y )

∆y =∆x +δdiff

(5.14)

where the Rabi frequency is Ω/2π = 77 GHz for Plat = 2.1 W. The resultant eigenstates are

composed by one “deep” eigenstate which couples the state |5〉 with a linear combination of

|2〉, |3〉, |4〉, and two eigenstates that are not coupled with |5〉 and produce flat potentials. The

presence of such an eigenstate explains why is possible to realize the “deep potential” method

with only one excitation beam. This is produced by the Raman coupling between the two

accordion beams, that couples the state |3〉 with |2〉 and |4〉. Fig. 5.19 shows the dependency

on the “deep” eigenvalue when moving along the x and y directions of the optical lattice. An

asymmetry in the light shift profile results from large frequency differences δdiff/2π ∼ 1 GHz

between the two lattice beams. The asymmetry disappears for frequency differences smaller

than 100 MHz.

(a) “Bad direction” illumination (b) “Good direction” illumination

Figure 5.20: Fluorescence images of a tightly filled two-dimensional optical lattice for
δdiff/2π= 440 MHz for two different directions of excitation.
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The sign of δdiff breaks the symmetry of the system. and a “good direction” for excitation

exists. Fig. 5.20 shows the fluorescence images of a two-dimensional lattice for two different

directions of excitation. The total fluorescence increases by a factor of two in the “good di-

rection” case. The “good direction” and “bad direction” become reversed when the frequency

offset sign changed (δdiff→−δdiff).

Note that a non-zero frequency difference δdiff is necessary in the experiment to avoid

light interferences between the two lattice beams. For the final experiments a frequency dif-

ference δdiff/2π= 80 MHz was used.



Chapter 6

Extension to fermionic isotopes

This section focuses in the requirements to extend the quantum gas microscope of ytterbium

atoms to the 173Yb fermionic isotope. The s-wave scattering length of this fermionic isotope is

a = 10.55(11), which is positive and roughly two times bigger compared to that of the bosonic

174Yb. Fermi degeneracy was experimentally demonstrated in 2007 for a six-spin-component

atomic gas [100]where temperatures of T /TF = 0.37 were obtained via evaporative cooling. A

two-spin-component Fermi degenerate can be generated by pumping the atoms to the |mF |=
5/2 states using a π polarized light [101, 102]. The lowest temperatures reported to the date

are T /TF = 0.14[101].

The process to create a two-dimensional condensate under the surface of the solid im-

mersion lens is all-optical and it does not depend on the hyperfine structure of the excited

state. Consequently, it can be directly be applied to the 173Yb fermionic isotope with only

minor changes in the optical system:

Zeeman Slower The 1S0→ 1P1 transition from F = 5/2 to F ′ = 7/2 is used to slow the atoms.

The isotope shift from 174Yb is 588 MHz (cf. Table 2.3). To shift the frequency it suffices

to modify the AOMs such that the fundamental wave shifts by 147 MHz (the AOMs are

in the double-pass configuration).

Horizontal and Vertical transport No changes required.

Magneto Optical Trap The 1S0→ 3P1 transition from F = 5/2 to F ′ = 7/2 is used to slow the

atoms. The isotope shift from 174Yb is 3805.7 MHz (cf. Table 2.4). The wavelength is

shifted by using an adjacent transmission peak in the reference cavity (ULE, FSR 3.0

GHz), and changing the frequency of the AOMs by 805 MHz.

Optical Accordion After loading the atoms into the optical accordion, a π polarized light

tuned to the 1S0→ 3P1(F = 5/2→ F ′ = 3/2) is used to pump the atoms to the |mF |= 5/2

states. The evaporation and compression procedure that follows requires no changes.

104
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6.1 Deep potential

The deep potential method used to trap the bosonic 174Yb during the fluorescence imaging

process involves a 5-energy level system that was studied in detail in Appendix 5.5 and ex-

perimentally in Chapter 5. In the case of the fermionic isotope 173Yb, the presence of nuclear

spin I = 5/2 results in hyperfine splitting of the 1P1 state, as shown in Fig. 6.1.

769 MHz

72 MHz
F’=3/2

F’=5/2

F’=7/2

F=5/2

F’’=5/2

Figure 6.1: Hyperfine splitting of 173Yb.

In the presence of a nuclear spin, the Hamiltonian can be written as H = Hhfs +Hstark.

Here, Hhfs is the hyperfine splitting interaction given by:

Hhfs = A173I · J+B173
6(I · J)2+3I · J−2I2J2

2I (2I −1)2J (2J −1)
. (6.1)

where A173 = 57.682(29)MHz and B173 = 609.065(98)MHz are the hyperfine splitting constants

of the 1P1 state in 173Yb [75]. For this section ħh will be abbreviated for the sake of convenience.

When there are no external fields present, the Hamiltonian of the system is simply H = Hhfs

which is diagonal in the basis of |F, mF 〉where F is the total angular momentum related to the

operator F= J+ I. The diagonal matrix elements are:

〈F, mF |Hhfs |F, mF 〉= 1

2
ħh A173G +ħh B173

3
2G (G +1)−2I (I +1)2J (J +1)

2I (2I −1)2J (2J −1)
(6.2)

where G = F (F + 1)− I (I + 1)− J (J + 1). F takes the values F = |J − I | . . . |J + I | = 3/2, 5/2, 7/2

for J = 1 and I = 5/2 resulting in:

〈3/2, mF |Hhfs |3/2,mF 〉/2π= 224 MHz

〈5/2, mF |Hhfs |5/2,mF 〉/2π=−545 MHz

〈7/2, mF |Hhfs |7/2,mF 〉/2π= 296 MHz

(6.3)



CHAPTER 6. EXTENSION TO FERMIONIC ISOTOPES 106

which corresponds to the hyperfine splitting shown in Fig. 6.1. Hstark is the stark shift inter-

action described in Appendix A.1. When the hyperfine splitting interaction is not present, the

Hamiltonian H = Hhfs can be approximated as being diagonal in the basis of |m J , mI 〉 with

resulting energy shifts that are only dependent on m J . In this case, the resultant diagonal

matrix elements are exactly the same as the obtained for the bosonic 174Yb (cf. Appendix 5.5).

When both interactions are present, the Hamiltonian H = Hhfs +Hstark is in general not

diagonal in neither the |F, mF 〉 basis nor the |m J , mI 〉 basis. The eigenvalues and eigenstates

can be only calculated by numerical diagonalization of the total Hamiltonian. Theoretical

calculations and experimental verifications of the Stark shift for strong fields were realized

for sodium and lithium in the case of DC fields [103, 104], and for rubidium in the case of

far-detuned ODTs [105, 106]. The calculations in this thesis follows a similar procedure, with

the difference that there are two strong fields corresponding to each of the accordion (lattice)

beams. The two accordion beams have orthogonal direction and polarization, resulting in a

strong Raman coupling between different m J sublevels.

6.1.1 AC Stark shift

The AC stark shift between a 1P1 sublevel |m J , mI 〉 and a (6s7s)1S0 sublevel |m ′J , m ′I 〉 is related

to the term (cf. Sec. A.1):

〈m J , mI |e r̂ |m ′J ,m ′I 〉=

〈m J , mI |
∑

F,mF

|F, mF 〉 〈F, mF |
e r̂

 ∑
F ′,m ′F
|F ′, m ′F 〉 〈F ′, m ′F |

 |m ′J , m ′I 〉=∑
F,mF

∑
F ′,m ′F
〈m J , mI |F, mF 〉 〈F, mF |e r̂ |F ′, m ′F 〉 〈F ′, m ′F |m ′J , m ′I 〉

(6.4)

where 〈m J ,mI |F, mF 〉 is the Clebsch-Gordan coefficient defined by:

〈m J , mI |F,mF 〉= (−1)J−I+mF
p

2F +1

 J I F

m J mI −mF

 (6.5)

where the notation
�

j1 j2 j
m1 m2 m

�
represents the Wigner 3j-symbol. Using the Wigner-Eckart the-

orem, the matrix element 〈F, mF |e r̂ |F ′,m ′F 〉 can be rewritten as the product of the reduced

matrix element 〈F ||e r ||F ′〉 and the Clebsch-Gordan coefficient 〈F ′, 1,m ′F ,q |F,mF 〉

〈F, mF |e r̂ |F ′, m ′F 〉= 〈F ||e r ||F ′〉 (−1)F
′−1+mF
p

2F +1

 F ′ 1 F

m ′F q −mF

 . (6.6)
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Here q = −1, 0,1 represents the σ−, π and σ+ polarizations of the light field, respectively.

The term vanishes when m ′F ̸=mF + q (total m conservation). Using the Wigner 6j-symbol

represented by
¦

j1 j2 j3
j4 j5 j6

©
, the reduced matrix term is further factorized into

〈F ||e r ||F ′〉= 〈J ||e r ||J ′〉 (−1)F
′+J+I+1
p
(2F ′+1)(2J +1)


F ′ 1 F

J I J ′

 . (6.7)

Finally, the reduced term 〈J ||e r ||J ′〉 is related to the transition probability by the formula:

| 〈J ||e r ||J ′〉 |2 = 2c ε0
ħh 2Γ 2

8Is

2J ′+1

2J +1
(6.8)

where Γ and Isat is the linewidth and saturation intensity of the 1P1↔ (6s7s)1S0 transition,

respectively. Figure 6.2 shows the relative transition probabilities between different hyperfine

sublevels of the 1P1 and (6s7s)1S0 states.

F’’=5/2

F’=7/2

1⁄35⁄2110⁄632⁄211⁄211⁄63

1⁄3 5⁄21 10⁄63 2⁄21 1⁄21 1⁄63

2⁄2110⁄634⁄214⁄2110⁄632⁄21

(a) Transition probabilities between F ′ = 7/2 and F ′′ = 5/2.

F’’=5/2

F’=5/2

2⁄2116⁄1056⁄3516⁄1052⁄21

2⁄21 16⁄105 6⁄35 16⁄105 2⁄21

5⁄213⁄351⁄1051⁄1053⁄355⁄21

(b) Transition probabilities between F ′ = 7/2 and F ′′ = 5/2.

F’’=5/2

F’=3/2

1⁄451⁄152⁄152⁄9

1⁄45 1⁄15 2⁄15 2⁄9

4⁄452⁄152⁄154⁄45

(c) Transition probabilities between F ′ = 7/2 and F ′′ = 5/2.

Figure 6.2: Transition probabilities between the different hyperfine sublevels of the 1P1 states
(F ′ = 3/2, 5/2, 7/2) and the (6s7s)1S0 state (F ′′ = 5/2).
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6.1.2 Hyperfine splitting interaction

Here, the matrix elements 〈m J , mI |Hhfs|m ′J , m ′I 〉 corresponding to the hyperfine splitting in-

teraction are calculated. Equation 6.1 is rewritten as:

Hhfs = A173I · J+B ′173

�
I · J+2(I · J)2− 2

3
I2J2
�

. (6.9)

where B ′173 ≡ 3B173
2I (2I−1)2J (2J−1) . To calculate the action of the operator I ·J on the eigenstates, it is

convenient to introduce the ladder operators J±, I±

J± = Jx ± i Jy , I± = Ix ± i Iy (6.10)

which satisfy

I · J= Jx Ix + Jy Iy + Jz Iz = Jz Iz +
J−I++ J+I−

2
. (6.11)

In a similar way, (I · J)2 results in:

(I · J)2 =
�

Jz Iz +
J−I++ J+I−

2

�2
= J 2

z I 2
z +

1

2
Jz Iz (J−I++ J+I−)+

1

2
(J−I++ J+I−)Jz Iz +

1

4
(J−I++ J+I−)2

= J 2
z I 2

z +
1

2
Jz Iz (J−I++ J+I−)+

1

2
(J−I++ J+I−)Jz Iz

+
1

4
(J 2− I 2

+ + J 2
+ I 2− + J− J+I+I−+ J+ J−I−I+). (6.12)

The action of the different operators on the eigenstates |m J , mI 〉 are:

Iz |m J , mI 〉=mI |m J , mI 〉
Jz |m J , mI 〉=m J |m J ,mI 〉
I2 |m J , mI 〉= Ĩ |m J ,mI 〉
J2 |m J , mI 〉= J̃ |m J ,mI 〉
I± |m J , mI 〉=
Æ

Ĩ ±mI (mI +1) |m J ,mI ±1〉
J± |m J , mI 〉=
q

J̃ ±m J (m J +1) |m J ±1, mI 〉

(6.13)

where Ĩ = I (I +1) and J̃ = J (J +1). The diagonal matrix elements results in:

〈m J , mI |Hhfs |m J , mI 〉= A173m J mI +B ′173

�
[ J̃ −m 2

J ][Ĩ −m 2
I ] +2m 2

J m 2
I − 2

3
Ĩ J̃
�

(6.14)
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The non-diagonal matrix elements are:

〈m J ±1, mI ∓1|Hhfs |m J ,mI 〉=�
A173

2
−B ′173(2m J mI ±m J ∓mI −1/2)

�Ç
( J̃ −m 2

J ±m J )(Ĩ −m 2
I ∓mI )

(6.15)

〈m J ±2, mI ∓2|Hhfs |m J ,mI 〉=
B ′173

2

q
J̃ −m J (m J ∓1)][ J̃ − (m J ∓1)(m J ∓2)][Ĩ −mI (mI ±1)][Ĩ − (mI ±1)(mI ±2)]

(6.16)

6.1.3 Numerical results

Using the matrix elements obtained in Sec. 6.1.1 and Sec. 6.1.1 and applying the effective

Hamiltonian procedure shown in Sec. 5.5 it is possible to calculate the eigenvalues numeri-

cally. The resultant eigenvalues for different light intensities are shown in Fig. 6.3 in the case

of∆lat/2π= 1 THz.

Figure 6.3: Eigenvalues of the total hamiltonian H = Hhfs +Hstark as a function of the light
intensity. The dotted lines in red are eigenvalues obtained for the bosonic 174Yb.
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For low light intensities (Ilat < 100 kW/cm2, ∆stark/2ħh < 200 MHz), F is a good quantum

number and the resultant eigenvalues split in three groups corresponding to F = 3/2,5/2 and

7/2 (inset in Fig. 6.3). The AC stark effect can be treated as a second-order perturbation,

resulting in light shifts that only depend on the mF values and change linearly with the light

intensity. For high intensities (∆stark/2ħh = 1 GHz), the eigenvalues split according to m J and

results in a light shift similar to the bosonic case (red dotted lines in Fig. 6.3). Due to the

hyperfine splitting interaction, each m J group split in different sublevels which depends on

mF . This effect is analog to the Paschen-Back effect produced by strong magnetic fields. The

results in this calculations are consistent with the results obtained with sodium, lithium and

rubidium [103, 104, 105, 106].

Figure 6.4 shows the eigenvalues for two different lattice detuning ∆lat/2π = 0.1, 10 THz.

Note that the horizontal axis is scaled to the same ratio as∆lat/2π for the purpose of compar-

ison. The resultant shapes are exactly the same as the obtained in Fig. 6.3. This means that

the shape is only dependent on the interaction energies Hhfs and Hstark∝ Ilat/∆lat.

Figure 6.4: Eigenvalues of the total hamiltonian H = Hhfs +Hstark as a function of the light
intensity for∆lat/2π= 0.1 and 10 THz.

6.2 Feasibility of the extension

The quantum gas microscope schema presented in this thesis can be easily extended to the

173Yb fermionic isotope. The process to create a pancake-shaped condensate of atoms un-

der the surface of the solid immersion lens requires only a few changes, which includes the

modification of the cooling beams frequency and the insertion of an additional beam used to

spin-polarize the atomic cloud before evaporative cooling. The deep potential method was

analyzed in the influence of the hyperfine splitting interaction. For very large light shifts as
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the used in the deep potential experiment (∆stark/2π ≈ 3 GHz) the hyperfine splitting inter-

action (∆hfs/2π ≈ 300 MHz) is one order of magnitude smaller, resulting in the breaking of

hyperfine splitting analog to the Paschen-Back effect in strong magnetic fields. As the resul-

tant light shift has the same gradient that in the case of the bosonic 174Yb, which was tested

experimentally in this work, it is possible to affirm that the procedure will also work for the

173Yb fermionic isotope. Additionally, the hyperfine splitting interaction split each of the m J

eigenvalues into multiple mF sublevels. This splitting might be beneficial to the deep po-

tential method, as the resultant linewidth-broadening of the 1S0↔ 1P1 transition would in

theory reduce the effects of light shift inhomogeneities during fluorescence imaging.



Chapter 7

Conclusions

Quantum simulators using fermionic atoms are useful for studying the Fermi-Hubbard model,

which is expected to be the key to elucidate the mechanism of high temperature supercon-

ductors. One of the biggest challenges to investigate the Fermi-Hubbard model is to reduce

the temperature of the system, which is a requirement for the observation of anti-ferromagnetic

order and d-wave super-fluidity.

The work presented in this thesis demonstrates the realization of a quantum gas micro-

scope for ytterbium atoms, a tool capable of measuring and reducing the temperature of a

Fermi-Hubbard system. Two big challenges were present in the development of a QGM: 1)

How to prepare a thin sample of condensate atoms under the surface the solid immersion

lens and 2) How to obtain a sufficient large number of atoms to realize high fidelity fluores-

cence imaging of atoms trapped in a two-dimensional optical lattice.

7.1 Experiment summary

In the first part of this thesis I presented a novel all-optical approach to load ultra-cold Yb

atoms into a single layer of a standing wave directly below the surface of solid immersion lens

(SIL). After loading the atoms into a magneto-optical-trap, two optical dipole trap beams were

used to transport the atoms directly under the surface of the SIL. The new method realized

here to create an “optical accordion” consists in reflecting a laser beam into the surface of

the SIL. The resultant accordion potential was used to create a Bose-Einstein condensate and

compress the atoms into a thin layer, positioned 2.6µm below the surface of the lens. The all-

optical scheme presented here can be applied to all atomic species regardless of the magnetic

moment or energy structure. In fact, a similar schema was recently used to realize a quantum

gas microscope of Lithium atoms [52].

The second part of this thesis focuses on how to load the disk-shaped condensate of atoms

into a two-dimensional optical lattice and how to realize high fidelity fluorescence imag-
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ing of the trapped atoms. To load the atoms into the optical lattice, the accordion system

used to compress the atoms was transformed into a two-dimensional optical lattice by retro-

reflecting each of the accordion beams. For single-site addressing of atoms in a two-dimensional

optical lattice the conventional method until now was to laser cool the atoms while observ-

ing the resultant fluorescence. In contrast with this approach, the innovative idea presented

here is to use a deep potential without cooling to contain the heated atoms during imaging.

To create such a deep potential, the wavelength of the accordion beams the wavelength of

the accordion beams was selected to be λ = 1081 nm, which is detuned by only 4 nm to the

1P1−1S0 transition (wavelength 1077 nm). The lifetime limitations of this system were studied

in detail showing a good agreement with a simple model consisting in two losses. Finally, the

performance of the quantum gas microscope was analyzed, resulting in a fidelity of 92% on

the reconstruction algorithm mainly limited by atom losses due to the short lifetime. By using

the ultraviolet strong transition combined with a solid immersion lens and high-resolution

optics, the system presented here was able to resolve individual sites in an optical lattice with

a 544-nm spacing, with a FHWM resolution of 318 nm.

7.2 Current quantum gas microscopes

Following the realization of two different quantum gas microscope for rubidium atoms in

2010 and 2011, the work presented here is the first realization of a quantum gas microscope

for a species different than rubidium. At the time of this thesis and to the extent of my knowl-

edge, a total of nine different quantum gas microscopes exist. The specifications for each of

the quantum gas microscope including resolution, lattice spacing, exposure time, loss and

hopping rates, and utilized method is summarized in Table. 7.1.

Laboratory Resol. Spacing Time L H Method Ref.

Rb Harvard 700 nm 532 nm ∼1 s 2% 0% PGC [46]

Rb MPQ 600 nm 640 nm 0.9 s 1% 0.5% PGC [47]

Yb Titech 318 nm 544 nm 40µs 8% 0% Deep potential

K Strathclyde 630 nm 532 nm 1.5 s 9% 8% EIT cooling [56]

K MIT 640 nm 532 nm 1 s 4.8% 1.2% Raman cooling [55]

K Toronto 600 nm 527 nm ∼5 s 2% 5% EIT cooling [57]

Li Harvard 520 nm 569 nm 1.9 s 2.6% 2.3% Raman cooling [52]

Li MPQ 900 nm 1150 nm 1 s 2.5% 5% Raman cooling [53]

Yb Kyoto 364 nm 266 nm 0.4 s 6.5% 6.7% Sideband cooling [58]

Table 7.1: Current quantum gas microscopes. The highlighted row corresponds to this work.

The quantum gas microscope presented in this work is characterized by:
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High resolution The resolution of 318 nm obtained in this work is the highest resolution

available for quantum gas microscopes up to the date. A high resolution is beneficial

to reduce the number of required photons, as the fluorescence from each atom is dis-

tributed in less pixels.

Fast imaging time The fast imaging times 40µs are five order of magnitude smaller com-

pared with other experiments. The advantage of having such short imaging times is

that the system is robust against mechanical instabilities in the optical system.

No hopping effects Due to the lack of a cooling method and the presence of a radiative force,

atoms are unlikely to hop to a neighbor site and stay pinned. This is also an advantage

as hopping effects are difficult to compensate. In contrast, loss effects can be compen-

sated by data averaging.

The “deep potential” schema presented here does not depend on the energy level struc-

ture and is completely all optical, and thus, can be adapted in theory to any atomic species.

In practice, however, this method is well suited for heavy species having small recoil energies

(ħhk )2/2m , such as europium, erbium, dysprosium, holmium, ytterbium and mercury.

7.3 Possible improvements

The following technical modifications would improve the fidelity of the quantum gas micro-

scope for ytterbium atoms:

Accordion power Increasing the power of the optical lattice lattice power from Plat = 2.1 W

to Plat = 10 W would increase the lifetime to ∼3000 photons. The loss ratio in this case

decreases from 8% to 5%.

Objective Lens and CCD camera The transmission of the objective lens can be improved from

the actual 54% to ∼80% by using custom-made objective lenses specially designed for

NUV. By using a different CCD camera, the quantum-efficiency can be increased from

to 0.5e −/photon to ∼0.7e −/photon. Both of these upgrades would result in a total col-

lection efficiency of 10%, which is two times larger than the current value. Doubling

the collection efficiency allows one to half the exposure time to 20µs and threshold to

75 photons, further decreasing the loss ratio from 5% to ∼2.5%.

Retro-reflected excitation beam A retro-reflected excitation beam would in theory increase

the lifetime by ∼10% in the current setup (Plat = 2.1 W). Note that if the lattice power is

increased to Plat = 10 W, the effect of this modification becomes negligible.
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7.4 Tasks

A remaining task is the evaluation of photo-association (PA) effects. The characteristic time

for PA inelastic collisions resulting in the loss of a pair of atoms is in the order of a few to tens of

microseconds [107, 108]. In quantum gas microscope experiments using cooling techniques

such as PGC, Raman Cooling and EIT Cooling, the exposure time is in the order of seconds

(cf. Table 7.1), which is five orders of magnitude larger than the PA characteristic time. Photo-

association losses in those experiments can be considered instantaneous, and the measured

fluorescence reflects the parity projection of the original atom-number distribution. For the

quantum gas microscope presented in this work the exposure time is 40µs, which is compa-

rable to the characteristic PA time. The fluorescence is then expected to increase in case of

multiple occupied sites, as pair of atoms emit a number of photons before being lost. In order

to investigate the effects of PA it is necessary to study a system where the number of atoms

is well determined, such as a Mott insulator. Current experiments focus in the observation

of the Superfluid-to-Mott-insulator transition at single atom level, which would be useful to

elucidate the effects of PA.

Note that PA effects will not affect the fluorescence in the case of the 173Yb fermionic iso-

tope. Multiple occupancy of fermions in a single-site is limited to atoms with different spin,

as the occupation of atoms with the same spin is forbidden by the Pauli exclusion principle.

Employing spin-selective excitations mediated by the 1S0↔ 3P2 transition, it is possible to

circumvent PA effects by measuring each spin separately.

7.5 Future experiments

Future experiments will focus on the study of the Fermi-Hubbard model using the 173Yb fermionic

isotope and the quantum gas microscope. The current quantum gas microscope schema can

be applied to any ytterbium isotope without major changes in the system (cf. Section 6).

One of the biggest challenges to determine the phase diagram of the Fermi-Hubbard model

will be the reduction of the temperature of the system, which is a requirement for the obser-

vation of the anti-ferromagnetic phase and the d-wave super-fluidity. The ultra-narrow tran-

sition in ytterbium combined with the high-resolution of the quantum gas microscope will

be a key feature to reduce the temperature of the system using theoretically proposed “spatial

filtering” techniques [59, 60].



Appendix A

Laser cooling and trapping

A.1 Optical dipole trap

When an electric field produced by a laser beam interacts with an atom, the energy levels of

the atom shift. The interaction Hamiltonian Hint for the dipole interaction is defined by

Hint =−µ ·E (A.1)

where µ and E represents the dipole momentum and electric field, respectively. Using the

perturbation theory, the energy shift δEi induced in the energy level Ei is given by:

δEa =
∑
a ̸=b

|〈a |Hint|b 〉|2
Ea −Eb

(A.2)

where |i 〉 is the eigenstate of the unperturbed Hamiltonian. Using the second quantization

representation, the electric field for a laser beam with frequencyω, can be written as

E(r) =

√√ ħhω
2V ε0

ê
�
â e i k·r+ â †e −i k·r� (A.3)

where V is the volume of the system, and e is the polarization of the light. Substituting this

equation into Eq. A.1, the dipole interaction can be represented as

Hint =−
√√ ħhω

2V ε0
ê ·µ �â e i k·r+ â †e −i k·r� . (A.4)

To solve 〈a |Hint|b 〉, let’s consider the dressed states 〈a ,n | and 〈b , n ′|. Knowing that the

annihilation and creation operator â satisfies â |n〉=pn |n −1〉 and â †|n〉=pn +1|n +1〉:
��〈a ,n |Hint|b , n ′〉��2 = ħhω

2V ε0
ê · ��〈a |µ|b 〉��2 �(n +1)δ(n ,n ′−1)+nδ(n ,n ′+1)

�
(A.5)
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furthermore, for a very large number of photons n ≈ n +1 and thus,

δEa ,n =
∑

b ̸=a ,n ′

nħhω
2V ε0

ê · ��〈a |µ|b 〉��2 δ(n , n ′−1)+δ(n , n ′+1)
Ea ,n −Eb ,n ′

=−∑
b ̸=a

nħhω
2V ε0

ê · ��〈a |µ|b 〉��2 � 1

ħhωb a +ħhω
+

1

ħhωb a −ħhω
�

=−∑
b ̸=a

nħhωc

V

1

2ħhε0c
ê · ��〈a |µ|b 〉��2 � 1

ωb a +ω
+

1

ωb a −ω
�

(A.6)

for ωb a = ωb −ωa . The spontaneous decay rate Γa b , the laser beam intensity I (r), and the

saturation intensity Isatare defined by:

Γa b =
ω3

b a

3πε0ħh c 3

��〈a |µ|b 〉��2 , I (r) =
nħhωc

V
, Isat =

ħhΓa bω
3
b a

12πc 2
(A.7)

Finally, considering a linear polarization, Eq. A.6 can be rewritten as

δEa (r) =−
∑
b ̸=a

ħhΓ 2
a b

8

I (r)
Isat

�
1

ωb a +ω
+

1

ωb a −ω
�

(A.8)

and for near resonant frequencies ω ≈ ωa b in a two-level atom, the expression can be ap-

proximated to:

δE (r) =−ħhΓ 2

8

I (r)
Isat

1

∆
(A.9)

In the case of a far-detuned laser in a two-level system, the scattering rate is related to the

light shift by the equation

ħhΓsc =
Γ

∆
δE (r). (A.10)

Note that for a constant light shift δE , the scattering rate can be reduced by using large de-

tunings∆.

A.1.1 Optical dipole trap generated by a Gaussian beam

A red-tuned focused Gaussian laser beam is the simplest way to create a dipole trap providing

three-dimensional confinement. This type of confinement is often referred as optical tweez-

ers. The spatial intensity distribution of a focused Gaussian beam with power P propagating

along the z axis is given by

I (r, z ) =
2P

πw (z )2
exp

�
−2

r 2

w 2(z )

�
(A.11)
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where r denotes the radial coordinate, and w (z ) depends on the axial coordinate z via

w (z ) =w0

√√√
1+
�

z

z0

�2
(A.12)

where w0 is the beam waist, and z0 = k w 2
0 /2 is the Rayleigh length. Substituting this equation

in Eq. A.8, the dipole potential Udip generated by a Gaussian beam results in:

Udip(r) =−
∑
b ̸=a

ħhΓ 2
a b

4Isat

P

πw (z )2
exp

�
−2

r 2

w 2(z )

�
ωb a

ω2
b a −ω2

(A.13)

For two-energy level system a red-detuned laser beam (ω>ω0) will produce a attractive

potential in the ground state and a repulsive potential in the excited state, as shown in Fig.

A.1.

Red-shifted gaussian

optical dipole trap

Blue-shifted gaussian

optical dipole trap

|g〉 |g〉

|e〉 |e〉

Figure A.1: Potential energy generated by a Gaussian beam in the case of a two-energy level
system.

A.1.2 Standing Wave

When two counter-propagating with the same frequency interfere as in Fig. A.2, a standing

wave with periodicity of half the wavelength is formed. By combining the standing wave gen-

erated by a red-detuned laser beam in one or more directions an optical lattice is created.

Figure A.2: Standing wave resulting from the interference of two counter-propagating waves
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The total electric field generated by two counter-propagating beams is given by:

E = E0 cos(k x −ωt )+E0 cos(−k x −ωt ) (A.14)

in the case that the two beams have the same amplitude E0. The light intensity is proportional

to the square of the electric field

I ∝|E |2 = |E0|2 [cos(k x −ωt )+ cos(−k x −ωt )]2

=
|E0|2

4

�
e i (k x−ωt )+ e −i (k x−ωt )+ e i (−k x−ωt )+ e −i (−k x−ωt )�2

=
|E0|2

4

��
e iωt + e −iωt
� �

e i k x + e −i k x
��2

= 4|E0|2 cos2(ωt )cos2(k x ) (A.15)

resulting in a standing wave in the x direction, having a peak intensity four times bigger than

the intensity of a single propagating-wave. In the case of two counter-propagating beams

with two different amplitudes

E = E0 cos(k x −ωt )+E1 cos(−k x −ωt ) (A.16)

it is still possible to calculate the intensity with a more complicated calculation, resulting in:

|E |2 = |E1|2 �(1−α+α2)+4αcos2(k x )
�

cos2(ωt ) (A.17)

where α = E2/E1 is the ratio between the two amplitudes. When α ̸= 1, the total intensity is

formed by the sum of a standing wave and a propagating wave (constant intensity, also called

offset intensity). Note that Eq. A.17 reverts to Eq. A.15 for α= 1.

By combining a three different standing waves in the three directions, an optical lattice

Ulattice =V0

�
cos2(k x )+ cos2(k y )+ cos2(k z )

�
(A.18)

is formed.

The periodicity of the standing wave can also be changed by crossing two different beams

as shown in Fig. A.3. For two waves propagating in the directions k̂1 = (cosθ , sinθ ) and k̂1 =

(cosθ ,−sinθ ), the resultant standing wave intensity is given by:

I ∝|E |2 = |E0|2 �cos(k x cosθ +k y sinθ −ωt )+ cos(k x cosθ −k y sinθ −ωt )
�2

= 4|E0|2 cos2(k y sinθ )cos2(k x cosθ −ωt ) (A.19)

which has a periodicity of λ/2sinθ .
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Figure A.3: Standing wave from the interference of two crossing propagating-waves.

A.2 Potential under the solid immersion lens

SIL

Figure A.4: Potential energy generated by a Gaussian beam in the case of a two-energy level
system.

The electric field of a Gaussian propagating in the x ′ axis

Egauss(x
′, y ′, z ′) = E0

√√ w0z

wz (x ′)

√√ w0y

wy (x ′)
exp

�
z ′2

wz (x ′)2

�
exp

�
y ′2

wy (x ′)2

�
cos(k x ′−ωt ) (A.20)

where the complex term related to the radius of curvature and the Gouy phase was neglected.

The Gaussian beam in terms of the coordinates (x , y , z ) can be obtained by a rotation of co-

ordinates given by 
x ′ = x cosθ + z sinθ

y ′ = y

z ′ =−x sinθ + z cosθ

(A.21)

resulting in

Eθ (x , y , z ,θ )≡ Egauss(x cosθ + z sinθ , y ,−x sinθ + z cosθ ) (A.22)
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where θ is the angle of incidence. The sum of the incident beam and reflected beam can be

written as:

Eacc(x , y , z ,θ ) = Eθ (x , y , z ,θ )+ r (θ )Eθ (x , y , z ,−θ ) (A.23)

where r (θ ) is the reflectivity (including phase) of the SIL surface for a s-polarized light

r (θ ) =
sinθ −n
q

1− cos2 θ
n 2

sinθ +n
q

1− cos2 θ
n 2

(A.24)

according to the Fresnel equations. For two optical accordion orthogonal to each other, the

total relative intensity is calculated by the sum of each accordion separately:

Iacc(x , y , z ,θ ) =
1

E0
2 〈|Eacc(x , y , z ,θ )|2+ |Eacc(y , x , z ,θ )|2〉 (A.25)

where 〈· · · 〉 denotes the time average.

Finally, the potential depth can be calculated multiplying the relative intensity by the Eq.

A.8

Uacc(x , y , z ) =−Iacc(x , y , z ,θacc)
∑
b ̸=a

ħhΓ 2
a b

2Isat

Plat

πw0z w0y

�
1

ωb a +ωlat
+

1

ωb a −ωlat

�
(A.26)

Fig. A.5 shows the potential in the ground state for two different angles of incidence and

input powers.

The trap parameters such as potential depth in the z direction and trap frequencies were

summarized in Table A.1. For deep angles of incidences both trap frequencies are roughly

proportional to
p

Plat and the vertical trap frequencyωz is proportional to sinθacc.

Plat(W) θacc(◦) z0(µm) Uz (µK) ωz /2π (kHz) ωxy/2π (kHz) ωz /ωxy

0.095 0.7 17.5 1.04 0.27 0.078 3.5

1.1 0.7 15.0 47.4 1.1 0.28 4.0

2.1 0.7 14.9 95.0 1.5 0.38 4.0

0.095 1 13.5 3.4 0.45 0.096 4.7

1.1 1 12.4 71 1.6 0.33 4.9

2.1 1 12.4 139 2.2 0.45 4.9

0.095 6 2.60 8.5 2.9 0.17 25

1.1 6 2.57 105 9.7 0.40 25

2.1 6 2.57 200 13 0.55 25

Table A.1: Optical accordion: Trap parameters for different angles of incidence and input
powers.

The potential for a retro-reflected optical accordion that forms an optical lattice can be
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Figure A.5: Potential generated by an optical accordion for two different incident angles and
input power.

calculated using Eq. A.23 by the formula

Elat(x , y , z ,θ ) = Eacc(x , y , z ,θ )+ r (θ )
p

T Eacc(x , y , z ,π+θ ) (A.27)

where T is the transmission of the optical elements used for retro-reflection (see Fig. 5.2).

The relative intensity is defined in a similar way as in the accordion potential case:

Ilat(x , y , z ,θ ) =
1

E0
2 〈|Elat(x , y , z ,θ )|2+ |Elat(y , x , z ,θ )|2〉. (A.28)

The resultant potential profile in the z direction and x direction is shown in Fig. A.6 for an

angle of incidence of θacc = 6◦. The potential depth is roughly 4
p

0.5 = 2.8 times bigger than

the potential of the optical accordion as only 50% of the total power can be retro-reflected

due to optical losses (see Fig. 5.2).

The potential depth in the z direction Vz is roughly two times bigger than the potential

barrier in the x y direction (lattice depth). For simple calculations purposes and for the sim-
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Figure A.6: Potential energy generated by a Gaussian beam in the case of a two-energy level
system.

ulations in Chapter 3 the potential can be approximated to:

V (x , y , z ) =−V0 sin2(kz z )
�
cos2(kx x )+ cos2(ky y )

�
(A.29)

by neglecting the effects of the harmonic envelope in the x y directions and the Gaussian

profile in the z direction. The important parameters for the optical lattice trap were summa-

rized in Table A.2. The trap frequency of the harmonic envelope in the x , y directions ωhar

was included as it represents an important parameter to calculate the atomic distribution of

a Mott-insulator.

Plat(W) z0(µm) Vz (µK) V0(µK) V0/Er
ωz
2π (kHz)

ωx y

2π (kHz) ωha r
2π (Hz)

0.007 2.71 1.4 0.95 20 1.3 8.6 52

1.1 2.57 305 150 3185 17 109 655

2.1 2.57 584 286 6080 23 150 905

Table A.2: Optical lattice: Potential and trap parameters for θacc = 6◦ and different input pow-
ers.

A.3 Evaporative Cooling

The local number density of atoms at the position r in a trap is n (r). As long as trap volume and

temperature do not change and no new atoms are loaded into the trap, this density evolves

in time according to
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d n (r, t )
d t

=−αn (r, t )−βn (r, t )2−γn (r, t )3−O (n 4) (A.30)

where α, β , γ are rate coefficients for different kinds of loss mechanism, e.g. background

gas collisions (α), two-body inelastic collisions as radiative escape or photoassociation (β ),

or three-body collisions (γ). Integrating over all the volume gives an expression related to the

total number of atoms N

d N (t )
d t

=−αN (t )−β
∫

V

n (r)2d r−γ
∫

V

n (r, t )3d r (A.31)

The single-particle loss coefficient α takes into account collisions with the background

gas in the vacuum apparatus. When the density is small enough that the two-body collisions

and three-body collisions can be disregarded, eq. A.31 can be easily solved:

N (t ) =N0 e −αt (A.32)

where n0 is the initial density of atoms. α is then equal to the inverse of the 1/e lifetime τ =

1/α.

The two-body loss coefficient β describes trap loss due to ultra-cold binary inelastic col-

lisions. Inelastic collisions occurs when two atoms collide and the kinetic energy is not con-

served. In general, such trap loss becomes important if the colliding atoms are not in their ab-

solute ground state. Consequently, this type of loss can occur in a MOT due to light-assisted

binary collisions involving atoms in the excited state, but it is negligibly small in an optical

dipole trap.

Three-body losses, as described by the coefficient γ in Eq. A.31, become relevant only at

extremely high densities, far exceeding the conditions of a MOT. In a collision of three atoms,

a bound dimer can be formed and the third atom takes up the released energy, so that all

three atoms are lost from the trap. As a far-detuned dipole trap allows one to completely

suppress binary collision losses by putting the atoms into the absolute internal ground state,

it represents an interesting tool for measurements on three-body collisions. The three-body

collision rate for 174Yb was experimentally calculated as γ= (4.2±1.5)×10−29cm6s−1 [109].

Evaporative cooling in a optical dipole trap is directly related to two-body elastic colli-

sions. When two atoms collide in an elastic way it results in two atoms having different ki-

netic energy. When the resultant high energy atom has enough energy to escape the trap,

evaporation occurs and the overall temperature in the trap is decreased after thermalization.

Evaporation efficiency can be technically controlled by limiting the depth of the potential

to ηkB T . In principle, there is no upper bound for the efficiency of evaporative cooling. This

can be demonstrated by the following extreme example: With an extremely large η, one just
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has to wait for the event that one particle has all the energy of the system. Evaporating a

single particle then cools the whole system to zero temperature. Unfortunately, this cooling

strategy would take an almost infinite amount of time. It is thus important to considerate

both the efficiency and cooling speed of the cooling process.

A.3.1 Efficiency of evaporation

Evaporative cooling happens on a exponential scale, which means that the characteristic

quantities for the evaporation process are therefore logarithmic derivatives. The efficiency

of the evaporation process is defined as:

ζ=
d (log T )
d log N )

=
Ṫ /T

Ṅ /N
(A.33)

where T is the average temperature on the system, and N is the total number of atoms. This

dimensionless quantity represents how much temperature the system decreases compared

to the decrease in the number of trapped atoms.

A.3.2 Speed of evaporation

We consider particles at density n0 in a box potential, and we assume that η is large enough.

For an untruncated Maxwell-Boltzmann distribution, almost all the atoms with energy higher

than ηkB T that involve a collision will be removed from the trap. Thus, to calculate the rate it

suffices to divide the number of atoms Nhwith energy larger than ηkB T by the collision time

τel.

d N

d t
=−Nh

τel
(A.34)

For η large enough, the number of atoms with energy larger than ηkB T can be approxi-

mated as:

Nh = 2N e −η
s
η

π
(A.35)

The collision time can be expressed as

1

τel
= n0σ vh (A.36)

where σ is the elastic collision cross section and v is the velocity of the particles. On the

other hand, the velocity of atoms with energy higher than ηkB T is

vh =

√√2ηkB T

m
=
p
πηv̄

2
(A.37)
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where v̄ is the mean thermal velocity. Thus, replacing these equations the rate of evapo-

ration results in:
d N

d t
=−Nh

τel
=−2N e −η
s
η

π
n0σvh =−2N n0σηe −η. (A.38)
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