Publications

     

  1. Multi-harmonic modulation in a fiber-optic gyroscope

    Martin Miranda, Nobuyki Takei, Yuki Miyazawa, and Mikio Kozuma
    Sensors 23, 4442 (2023).

  2.  

  3. Simultaneous suppression of thermal phase noise and relative intensity noise in a fiber optic gyroscope

    Nobuyuki Takei, Martin Miranda, Yuki Miyazawa, and Mikio Kozuma
    IEEE Sensors Journal 23, 2249 (2023).

  4.  

  5. High-Flux Cold Ytterbium Atomic Beam Source Using Two-dimensional Laser Cooling with Intercombination Transition

    Toshiyuki Hosoya, Ryotaro Inoue,Tomoya Sato and Mikio Kozuma
    Optics Communications 528, 129048 (2023).

  6.  

  7. Bose-Einstein Condensation of Europium

    Yuki Miyazawa, Ryotaro Inoue, Hiroki Matsui, Gyohei Nomura, and Mikio Kozuma
    Phys. Rev. Lett. 129, 223401 (2022).

  8.  

  9. Understanding one-body losses in magnetically trapped metastable europium atoms

    Hiroki Matsui, Yuki Miyazawa, Ryotaro Inoue, and Mikio Kozuma
    Optics Communications 502, 127408 (2022).

  10.  

  11. Narrow-line magneto-optical trap for europium

    Yuki Miyazawa, Ryotaro Inoue, Hiroki Matsui, Kenta Takanashi and Mikio Kozuma
    Phys. Rev. A 103, 053122 (2021).

  12.  

  13. Magneto-optical trapping of optically pumped metastable europium

    Ryotaro Inoue, Yuki Miyazawa and Mikio Kozuma
    Phys. Rev. A 97, 061607(R) (2018).

  14.  

  15. Site-resolved imaging of a bosonic Mott insulator using ytterbium atoms

    Martin Miranda, Ryotaro Inoue, Naoki Tambo and Mikio Kozuma
    Phys. Rev. A 96, 043626 (2017).

  16.  

  17. Measuring the branching ratios from the y8P9/2 state to metastable states in europium

    Yuki Miyazawa, Ryotaro Inoue, Keiji Nishida, Toshiyuki Hosoya and Mikio Kozuma
    Optics Communications 392, 171 (2017).

  18.  

  19. Injection locking of a high power ultraviolet laser diode for laser cooling of ytterbium atoms

    Toshiyuki Hosoya, Martin Miranda, Ryotaro Inoue and Mikio Kozuma
    Rev. Sci. Instrum. 86, 073110 (2015).

  20.  

  21. Site-resolved imaging of ytterbium atoms in a two-dimensional optical lattice

    M. Miranda, R. Inoue, Y. Okuyama, A. Nakamoto and M. Kozuma
    Phys. Rev. A 91, 063414 (2015).

  22.  

  23. All-optical transport and compression of ytterbium atoms into the surface of a solid immersion lens

    M. Miranda, A. Nakamoto, Y. Okuyama, A. Noguchi, M. Ueda, M. Kozuma
    Phys. Rev. A 86, 063615 (2012).

  24.  

  25. Quantum-state tomography of a single nuclear spin qubit of an optically manipulated ytterbium atom

    A. Noguchi, Y. Eto, M. Ueda, M. Kozuma
    Phys. Rev. A 84, 030301(R) (2011).

  26.  

  27. Projective Measurement of a Single Nuclear Spin Qubit by Using Two-Mode Cavity QED

    Y. Eto, A. Noguchi, P. Zhang, M. Ueda, M. Kozuma
    Phys. Rev. Lett. 106, 160501 (2010).

  28.  

  29. Single-nuclear-spin cavity QED

    M. Takeuchi, N. Takei, K. Doi, P. Zhang, M. Ueda and M. Kozuma
    Phys. Rev. A 81, 062308 (2010).

  30.  

  31. Faraday rotation with a single-nuclear-spin qubit in a high-finesse optical cavity

    N. Takei, M. Takeuchi, Y. Eto, A. Noguchi, P. Zhang, M. Ueda, and M. Kozuma
    Phys. Rev. A 81, 042331 (2010).

  32.  

  33. Quantum memory of a squeezed vacuum for arbitrary frequency sidebands

    M. Arikawa, K. Honda, D. Akamatsu, S. Nagatsuka, K. Akiba, A. Furusawa, M. Kozuma
    Phys. Rev. A 81, 021605(R) (2010).

  34.  

  35. Measuring Qutrit-Qutrit Entanglement of Orbital Angular Momentum States of an Atomic Ensemble and a Photon

    R. Inoue, T. Yonehara, Y. Miyamoto, M. Koashi, M. Kozuma
    Phys. Rev. Lett. 103, 110503 (2009).

  36.  

  37. Storage and retrieval of nonclassical photon pairs and conditional single photons generated by parametric down-conversion process

    K. Akiba, K. Kashiwagi, M. Arikawa, and M. Kozuma
    New J. Phys. 11, 013049 (2008).

  38.  

  39. Storage and Retrieval of a Squeezed Vacuum

    K. Honda, D. Akamatsu, M. Arikawa, Y. Yokoi, K. Akiba, S. Nagatsuka, T. Tanimura, A. Furusawa, M. Kozuma
    Phys. Rev. Lett. 100, 093601 (2008).

  40.  

  41. Ultraslow Propagation of Squeezed Vacuum Pulses with Electromagnetically Induced Transparency

    D. Akamatsu, Y. Yokoi, M. Arikawa, S. Nagatsuka, T. Tanimura, A. Furusawa, M. Kozuma
    Phys. Rev. Lett. 99, 153602 (2007).

  42.  

  43. Observation of Topological and Parity-dependent Phase of m=0 Spin States

    Koji Usami, Mikio Kozuma
    Phys. Rev. Lett. 99, 140404 (2007).

  44.  

  45. Observation of electromagnetically induced transparency for a squeezed vacuum with the time domain method

    M. Arikawa, K. Honda, D. Akamatsu, Y. Yokoil, K. Akiba, S. Nagatsuka, A. Furusawa, and M. Kozuma
    Optics Express 15, 11849-11854 (2007).

  46.  

  47. Frequency-filtered storage of parametric fluorescence with electromagnetically induced transparency

    K. Akiba, K. Kashiwagi, T. Yonehara, and M. Kozuma
    Phys. Rev. A 76, 023812 (2007).

  48.  

  49. Entanglement of orbital angular momentum states between an ensemble of cold atoms and a photon

    R. Inoue, N. Kanai, T. Yonehara, Y. Miyamoto, M. Koashi, and M. Kozuma
    Phys. Rev. A 74, 053809 (2006).

  50.  

  51. How to measure the quantum state of collective atomic spin excitation

    Koji Usami, Jun-ichi Takahashi, and Mikio Kozuma
    Phys. Rev. A 74, 043815 (2006).

  52.  

  53. Generation of a squeezed vacuum resonant on a rubidium D1 line with periodically poled KTiOPO4

    Takahito Tanimura, Daisuke Akamatsu, Yoshihiko Yokoi, Akira Furusawa, and Mikio Kozuma
    Optics Letters 31, 2344-2346 (2006).

  54.  

  55. Frequency-filtered parametric fluorescence interacting with an atomic ensemble

    K. Akiba, D. Akamatsu and M. Kozuma
    Optics Communications 259, Issue 2, 789-792 (2006).

  56.  

  57. Electromagnetically Induced Transparency with Squeezed Vacuum

    Daisuke Akamatsu, Keiichirou Akiba, and Mikio Kozuma
    Phys. Rev. Lett. 92, 203602 (2004).

  58.  

  59. Coherent transfer of orbital angular momentum from an atomic system to a light field

    Daisuke Akamatsu and Mikio Kozuma
    Phys. Rev. A 67, 023803 (2003).

  60.  

  61. Steep optical-wave group-velocity reduction and "storage" of light without on-resonance electromagnetically induced transparency

    M. Kozuma, D. Akamatsu, L. Deng, E. W. Hagley, and M. G. Payne
    Phys. Rev. A 66, 031801 (2002).

  62.  

  63. Achieving very-low-loss group velocity reduction without electromagnetically induced transparency

    L. Deng, E. W. Hagley, M. Kozuma, D. Akamatsu, and M. G. Payne
    Appl. Phys. Lett. 81, 1168 (2002).

  64.  

  65. Control of light pulse propagation with only a few cold atoms in a high-finesse micro-cavity

    Y. Shimizu, N. Shiokawa, N. Yamamoto, M. Kozuma, T. Kuga, L. Deng, and E. W. Hagley
    Phys. Rev. Lett. 89, 233001 (2002).

  66.  

  67. Optical-wave group-velocity reduction without electromagnetically induced transparency

    L. Deng, E. W. Hagley, M. Kozuma, and M. G. Payne
    Phys. Rev. A 65, 051805(R) (2002).

  68.  

  69. Opening optical four-wave mixing channels with giant enhancement using ultraslow pump waves

    L. Deng, M. Kozuma, E. W. Hagley, and M. G. Payne
    Phys. Rev. Lett. 88, 143902 (2002).

  70.  

  71. Mach-Zehnder Bragg interferometer for a Bose-Einstein condensate

    Y. Torii, Y. Suzuki, M. Kozuma, T. Sugiura, and T. Kuga, L. Deng, and E. W. Hagely
    Phys. Rev. A 61, 041602(R) (2000).

  72.  

  73. Coherence properties of an atom laser

    M. Trippenbach, Y.B. Band, M. Edwards, M. Doery, P.S. Julienne, E.W. Hagley, L. Deng, M. Kozuma, K. Helmerson, S.L. Rolston, ,and W.D. Phillips
    J. Phys. B: At. Mol. Opt. Phys. 33, 47 (2000).

  74.  

  75. Phase-Coherent Amplification of Matter Waves

    M. Kozuma, Y. Suzuki, Y. Torii, T. Sugiura, T. Kuga, E. W. Hagley, and L. Deng
    Science 286, 2309 (1999).

  76.  

  77. Measurement of the Coherence of a Bose-Einstein Condensate

    E. W. Hagley, L. Deng, M. Kozuma, M. Tripppenbach, Y. B. Band, M. Edwards, M. Doery, P. S. Julienne, K.Helmerson, S. L. Rolston, and W. D. Phillips
    Phys. Rev. Lett. 83, 3112 (1999).

  78.  

  79. A Well-Collimated Quasi-Continuous Atom Laser

    E. W. Hagley, L. Deng, M. Kozuma, J. Wen, K. Helmerson, S. L. Rolston, and W. D. Phillips
    Science 283, 1706 (1999).

  80.  

  81. Coherent Splitting of Bose-Einstein Condensed Atoms with Optically Induced Bragg Diffraction

    M. Kozuma, L. Deng, E. W. Hagley, J. Wen, R. Lutwak, K. Helmerson, S. L. Rolston, and W. D. Phillips
    Phys. Rev. lett. 82, 871(1999).

  82.  

  83. Phase change of a probe due to oscillation of cold atoms in an optical standing wave

    M. Kozuma, K. Nakagawa, W. Jhe, and M. Ohtsu
    Phys. Rev. A 57, R24 (1998).

  84.  

  85. Continuous wavelength sweep of external cavity 630 nm laser diode without antireflection coating on output facet

    T. Nayuki, T. Fuju, K. Nemoto, M. Kozuma, M. Kourogi, M. Ohtsu
    Optical Review 5, 267 (1998).

  86.  

  87. Accurate frequency control of external-cavity laser diode by sideband locking technique

    T. Fujii, T. Nayuki, K. Nemoto, M. Kozuma, M. Kourogi, M. Ohtsu
    Jpn. J. Appl. Phys. 35, 6090 (1996).

  88.  

  89. Solution to the bistability problem in shear-force distance regulation encountered in scanning force and near-field optical microscopes

    A. V. Zvyagin, J. D. White, M. Kourogi, M. Kozuma, M. Ohtsu
    Appl. Phys. Lett. 71, 2541 (1997).

  90.  

  91. Observation of Temporal Behavior of an Atomic wave Packet Localized in an Optical Potential

    M. Kozuma, K. Nakagawa, W. Jhe, and M. Ohtsu
    Phys. Rev. Lett. 76, 2428 (1996).

  92.  

  93. Observation of a transient response of recoil-induced resonance: A method for the measurement of atomic motion in an optical standing wave

    M. Kozuma, Y. Imai, K. Nakagawa, and M. Ohtsu
    Phys. Rev. A 52, R3421 (1995).

  94.  

  95. Frequency stabilization, linewidth reduction, and fine detuning of a semiconductor laser by using velocity-selective optical pumping of atomic resonance line

    M. Kozuma, M. Kourogi, M. Ohtsu, and H. Hori
    Appl. Phys. Lett. 61, 1895 (1992).


研究 メンバー 研究業績 博論・卒論 アクセス リンク 内部向け情報 English